## Best simultaneous Diophantine approximations. I. Growth rates of best approximation denominators

HTML articles powered by AMS MathViewer

- by J. C. Lagarias
- Trans. Amer. Math. Soc.
**272**(1982), 545-554 - DOI: https://doi.org/10.1090/S0002-9947-1982-0662052-7
- PDF | Request permission

## Abstract:

This paper defines the notion of a best simultaneous Diophantine approximation to a vector $\alpha$ in $R^n$ with respect to a norm $\left \| \cdot \right \|$ on $R^n$. Suppose $\alpha$ is not rational and order the best approximations to $\alpha$ with respect to $\left \| \cdot \right \|$ by increasing denominators $1=q_1 < q_2 < \cdots$. It is shown that these denominators grow at least at the rate of a geometric series, in the sense that \[ g\left ( {\alpha , \left \| { \cdot } \right \|} \right ) = \liminf \limits _{k \to \infty } {({q_k})^{1/k}} \geq 1 + \frac {1}{{{2^{n + 1}}}}\]. Let $g\left ( {\left \| \cdot \right \|} \right )$ denote the infimum of $g\left ( {\alpha , \left \| { \cdot } \right \|} \right )$ over all $\alpha$ in $R^n$ with an irrational coordinate. For the sup norm $\left \| \cdot \right \|_s$ on $R^2$ it is shown that $g\left ( {\left \| \cdot \right \|}_s \right )\ge \theta =1.270^{+}$ where $\theta ^4=\theta ^{2}+1$.## References

- William W. Adams,
*Simultaneous diophantine approximations and cubic irrationals*, Pacific J. Math.**30**(1969), 1–14. MR**245522**, DOI 10.2140/pjm.1969.30.1 - Arne J. Brentjes,
*A two-dimensional continued fraction algorithm for best approximations with an application in cubic number fields*, J. Reine Angew. Math.**326**(1981), 18–44. MR**622343**, DOI 10.1515/crll.1981.326.18 - J. W. S. Cassels,
*Simultaneous Diophantine approximation*, J. London Math. Soc.**30**(1955), 119–121. MR**66432**, DOI 10.1112/jlms/s1-30.1.119 - T. W. Cusick,
*Formulas for some Diophantine approximation constants. II*, Acta Arith.**26**(1974/75), 117–128. MR**354563**, DOI 10.4064/aa-26-2-117-128 - T. W. Cusick,
*Best Diophantine approximation for ternary linear forms*, J. Reine Angew. Math.**315**(1980), 40–52. MR**564522**, DOI 10.1515/crll.1980.315.40 - H. Davenport,
*Simultaneous Diophantine approximation*, Proc. London Math. Soc. (3)**2**(1952), 406–416. MR**54657**, DOI 10.1112/plms/s3-2.1.406 - H. Davenport,
*Simultaneous Diophantine approximation*, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956, pp. 9–12. MR**0085302** - H. Davenport and K. Mahler,
*Simultaneous Diophantine approximation*, Duke Math. J.**13**(1946), 105–111. MR**16068**, DOI 10.1215/S0012-7094-46-01311-7 - H. Davenport and Wolfgang M. Schmidt,
*Approximation to real numbers by quadratic irrationals*, Acta Arith.**13**(1967/68), 169–176. MR**219476**, DOI 10.4064/aa-13-2-169-176 - H. Davenport and W. M. Schmidt,
*A theorem on linear forms*, Acta Arith.**14**(1967/68), 209–223. MR**225728**, DOI 10.4064/aa-14-2-209-223
E. Dubois, $F$ - Eugène Dubois and Georges Rhin,
*Approximations simultanées de deux nombres réels*, Séminaire Delange-Pisot-Poitou, 20e année: 1978/1979. Théorie des nombres, Fasc. 1 (French), Secrétariat Math., Paris, 1980, pp. Exp. No. 9, 13 (French, with English summary). MR**582422** - W. Jurkat, W. Kratz, and A. Peyerimhoff,
*On best two-dimensional Dirichlet-approximations and their algorithmic calculation*, Math. Ann.**244**(1979), no. 1, 1–32. MR**550059**, DOI 10.1007/BF01420334
J. C. Lagarias, - J. C. Lagarias,
*Best simultaneous Diophantine approximations. I. Growth rates of best approximation denominators*, Trans. Amer. Math. Soc.**272**(1982), no. 2, 545–554. MR**662052**, DOI 10.1090/S0002-9947-1982-0662052-7
—, - Serge Lang,
*Introduction to diophantine approximations*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR**0209227**

*-best approximation of zero by a cubic linear form: Calculation of the fundamental unit of a not totally real cubic field*, Proc. Queen’s Number Theory Conf., 1979 (P. Ribenboim, ed.), Queen’s Papers in Pure and Appl. Math., no. 54, Queen’s University, Kingston, 1980, pp. 205-222.

*Some new results in simultaneous Diophantine approximation*, Proc. Queen’s Number Theory Conf., 1979 (P. Ribenboim, ed), Queen’s Papers in Pure and Appl. Math., no. 54, Queens University, Kingston, 1980, pp. 453-474.

*Best simultaneous Diophantine approximations*. III.

*Approximations to a basis of a non-totally real cubic field*, in preparation.

## Bibliographic Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**272**(1982), 545-554 - MSC: Primary 10F10; Secondary 10F20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662052-7
- MathSciNet review: 662052