Best simultaneous Diophantine approximations. I. Growth rates of best approximation denominators
HTML articles powered by AMS MathViewer
- by J. C. Lagarias
- Trans. Amer. Math. Soc. 272 (1982), 545-554
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662052-7
- PDF | Request permission
Abstract:
This paper defines the notion of a best simultaneous Diophantine approximation to a vector $\alpha$ in $R^n$ with respect to a norm $\left \| \cdot \right \|$ on $R^n$. Suppose $\alpha$ is not rational and order the best approximations to $\alpha$ with respect to $\left \| \cdot \right \|$ by increasing denominators $1=q_1 < q_2 < \cdots$. It is shown that these denominators grow at least at the rate of a geometric series, in the sense that \[ g\left ( {\alpha , \left \| { \cdot } \right \|} \right ) = \liminf \limits _{k \to \infty } {({q_k})^{1/k}} \geq 1 + \frac {1}{{{2^{n + 1}}}}\]. Let $g\left ( {\left \| \cdot \right \|} \right )$ denote the infimum of $g\left ( {\alpha , \left \| { \cdot } \right \|} \right )$ over all $\alpha$ in $R^n$ with an irrational coordinate. For the sup norm $\left \| \cdot \right \|_s$ on $R^2$ it is shown that $g\left ( {\left \| \cdot \right \|}_s \right )\ge \theta =1.270^{+}$ where $\theta ^4=\theta ^{2}+1$.References
- William W. Adams, Simultaneous diophantine approximations and cubic irrationals, Pacific J. Math. 30 (1969), 1–14. MR 245522, DOI 10.2140/pjm.1969.30.1
- Arne J. Brentjes, A two-dimensional continued fraction algorithm for best approximations with an application in cubic number fields, J. Reine Angew. Math. 326 (1981), 18–44. MR 622343, DOI 10.1515/crll.1981.326.18
- J. W. S. Cassels, Simultaneous Diophantine approximation, J. London Math. Soc. 30 (1955), 119–121. MR 66432, DOI 10.1112/jlms/s1-30.1.119
- T. W. Cusick, Formulas for some Diophantine approximation constants. II, Acta Arith. 26 (1974/75), 117–128. MR 354563, DOI 10.4064/aa-26-2-117-128
- T. W. Cusick, Best Diophantine approximation for ternary linear forms, J. Reine Angew. Math. 315 (1980), 40–52. MR 564522, DOI 10.1515/crll.1980.315.40
- H. Davenport, Simultaneous Diophantine approximation, Proc. London Math. Soc. (3) 2 (1952), 406–416. MR 54657, DOI 10.1112/plms/s3-2.1.406
- H. Davenport, Simultaneous Diophantine approximation, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956, pp. 9–12. MR 0085302
- H. Davenport and K. Mahler, Simultaneous Diophantine approximation, Duke Math. J. 13 (1946), 105–111. MR 16068, DOI 10.1215/S0012-7094-46-01311-7
- H. Davenport and Wolfgang M. Schmidt, Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967/68), 169–176. MR 219476, DOI 10.4064/aa-13-2-169-176
- H. Davenport and W. M. Schmidt, A theorem on linear forms, Acta Arith. 14 (1967/68), 209–223. MR 225728, DOI 10.4064/aa-14-2-209-223 E. Dubois, $F$-best approximation of zero by a cubic linear form: Calculation of the fundamental unit of a not totally real cubic field, Proc. Queen’s Number Theory Conf., 1979 (P. Ribenboim, ed.), Queen’s Papers in Pure and Appl. Math., no. 54, Queen’s University, Kingston, 1980, pp. 205-222.
- Eugène Dubois and Georges Rhin, Approximations simultanées de deux nombres réels, Séminaire Delange-Pisot-Poitou, 20e année: 1978/1979. Théorie des nombres, Fasc. 1 (French), Secrétariat Math., Paris, 1980, pp. Exp. No. 9, 13 (French, with English summary). MR 582422
- W. Jurkat, W. Kratz, and A. Peyerimhoff, On best two-dimensional Dirichlet-approximations and their algorithmic calculation, Math. Ann. 244 (1979), no. 1, 1–32. MR 550059, DOI 10.1007/BF01420334 J. C. Lagarias, Some new results in simultaneous Diophantine approximation, Proc. Queen’s Number Theory Conf., 1979 (P. Ribenboim, ed), Queen’s Papers in Pure and Appl. Math., no. 54, Queens University, Kingston, 1980, pp. 453-474.
- J. C. Lagarias, Best simultaneous Diophantine approximations. I. Growth rates of best approximation denominators, Trans. Amer. Math. Soc. 272 (1982), no. 2, 545–554. MR 662052, DOI 10.1090/S0002-9947-1982-0662052-7 —, Best simultaneous Diophantine approximations. III. Approximations to a basis of a non-totally real cubic field, in preparation.
- Serge Lang, Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0209227
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 545-554
- MSC: Primary 10F10; Secondary 10F20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662052-7
- MathSciNet review: 662052