## On actions of regular type on complex Stiefel manifolds

HTML articles powered by AMS MathViewer

- by McKenzie Y. Wang PDF
- Trans. Amer. Math. Soc.
**272**(1982), 589-610 Request permission

## Abstract:

The usual unitary representations of the special unitary, symplectic, or special orthogonal groups define a sequence of smooth actions on the complex Stiefel manifolds called the regular linear models. If one of the above groups acts smoothly on the complex Stiefel manifold of orthonormal $2$-frames in $\mathbf C^n$ for odd $n$, and if the identity component of the principal isotropy type is of regular type, then it is shown under mild dimension restrictions that the orbit structure and the cohomology structure of the fixed point varieties (over the $\mod 2$ Steenrod algebra) resemble those of the regular linear models. The resemblance is complete in the cases of the special unitary and symplectic groups. There is an obstruction to complete resemblance in the case of the special orthogonal groups. An application of the above regularity theorems is given.## References

- J. Frank Adams,
*Lectures on Lie groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0252560** - M. F. Atiyah, R. Bott, and A. Shapiro,
*Clifford modules*, Topology**3**(1964), no. suppl, suppl. 1, 3–38. MR**167985**, DOI 10.1016/0040-9383(64)90003-5 - Armand Borel,
*Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes*, Tohoku Math. J. (2)**13**(1961), 216–240 (French). MR**147579**, DOI 10.2748/tmj/1178244298 - Armand Borel,
*Topics in the homology theory of fibre bundles*, Lecture Notes in Mathematics, No. 36, Springer-Verlag, Berlin-New York, 1967. Lectures given at the University of Chicago, 1954; Notes by Edward Halpern. MR**0221507** - Armand Borel,
*Seminar on transformation groups*, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR**0116341** - A. Borel and F. Hirzebruch,
*Characteristic classes and homogeneous spaces. I*, Amer. J. Math.**80**(1958), 458–538. MR**102800**, DOI 10.2307/2372795 - A. Borel and J. De Siebenthal,
*Les sous-groupes fermés de rang maximum des groupes de Lie clos*, Comment. Math. Helv.**23**(1949), 200–221 (French). MR**32659**, DOI 10.1007/BF02565599 - Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - Glen E. Bredon,
*Homotopical properties of fixed point sets of circle group actions. I*, Amer. J. Math.**91**(1969), 874–888. MR**259905**, DOI 10.2307/2373308 - Theodore Chang and Tor Skjelbred,
*The topological Schur lemma and related results*, Ann. of Math. (2)**100**(1974), 307–321. MR**375357**, DOI 10.2307/1971074 - Wu-chung Hsiang and Wu-yi Hsiang,
*Differentiable actions of compact connected classical groups. I*, Amer. J. Math.**89**(1967), 705–786. MR**217213**, DOI 10.2307/2373241 - Wu-chung Hsiang and Wu-yi Hsiang,
*Some problems in differentiable transformation groups*, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 223–234. MR**0253368**
W. C. Hsiang, W. Y. Hsiang and M. Davis, - Wu-yi Hsiang,
*Cohomology theory of topological transformation groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85, Springer-Verlag, New York-Heidelberg, 1975. MR**0423384** - Wu-yi Hsiang,
*On characteristic classes of compact homogeneous spaces and their applications in compact transformation groups. I*, Bol. Soc. Brasil. Mat.**10**(1979), no. 2, 87–161. MR**607008**, DOI 10.1007/BF02584633
—, - Wu-yi Hsiang and J. C. Su,
*On the classification of transitive effective actions on Stiefel manifolds*, Trans. Amer. Math. Soc.**130**(1968), 322–336. MR**221529**, DOI 10.1090/S0002-9947-1968-0221529-1 - I. M. James,
*On the homotopy type of Siefel manifolds*, Proc. Amer. Math. Soc.**29**(1971), 151–158. MR**275427**, DOI 10.1090/S0002-9939-1971-0275427-3 - I. M. James,
*The topology of Stiefel manifolds*, London Mathematical Society Lecture Note Series, No. 24, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR**0431239** - I. M. James and J. H. C. Whitehead,
*The homotopy theory of sphere bundles over spheres. I*, Proc. London Math. Soc. (3)**4**(1954), 196–218. MR**61838**, DOI 10.1112/plms/s3-4.1.196 - S. D. Liao,
*A theorem on periodic transformations of homology spheres*, Ann. of Math. (2)**56**(1952), 68–83. MR**48814**, DOI 10.2307/1969767 - Hans Samelson,
*Notes on Lie algebras*, Van Nostrand Reinhold Mathematical Studies, No. 23, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR**0254112** - J. C. Su,
*Periodic transformations on the product of two spheres*, Trans. Amer. Math. Soc.**112**(1964), 369–380. MR**163309**, DOI 10.1090/S0002-9947-1964-0163309-8 - W. A. Sutherland,
*A note on the parallelizability of sphere-bundles over spheres*, J. London Math. Soc.**39**(1964), 55–62. MR**175142**, DOI 10.1112/jlms/s1-39.1.55
M. Wang,

*Differentiable actions of compact simple Lie groups on homotopy spheres and euclidean spaces*, Proc. Sympos. Pure and Appl. Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1977, pp. 99-109.

*On the classification of compact linear groups with non-trivial principal isotropy subgroups*, Preprint, University of California, Berkeley, 1979.

*A note on the calculation of Stiefel-Whitney classes and a paper of Wu Yi Hsiang*, Pacific J. Math. —, Dissertation, Stanford University, 1980.

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**272**(1982), 589-610 - MSC: Primary 57S15; Secondary 57S25
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662055-2
- MathSciNet review: 662055