## On actions of adjoint type on complex Stiefel manifolds

HTML articles powered by AMS MathViewer

- by McKenzie Y. Wang PDF
- Trans. Amer. Math. Soc.
**272**(1982), 611-628 Request permission

## Abstract:

Let $G(m)$ denote ${\rm {SU}}(m)$ or ${\rm {Sp}}(m)$. It is shown that when $m \geq 5 G(m)$ cannot act smoothly on $W_{n,2}$, the complex Stiefel manifold of orthonormal $2$-frames in $\mathbf C^n$, for $n$ odd, with connected principal isotropy type equal to the class of maximal tori in $G(m)$. This demonstrates an important difference between $W_{n,2}$, $n$ odd, and $S^{2n-3}\times S^{2n-1}$ in the behavior of differentiable transformation groups. Exactly the same holds for ${\rm {SO}}(m)$ or Spin$(m)$ if it is further assumed that a maximal $2$-torus of ${\rm {SO}}(m)$ has fixed points.$^{2}$## References

- Armand Borel,
*Seminar on transformation groups*, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR**0116341** - A. Borel and J. De Siebenthal,
*Les sous-groupes fermés de rang maximum des groupes de Lie clos*, Comment. Math. Helv.**23**(1949), 200–221 (French). MR**32659**, DOI 10.1007/BF02565599 - Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - Glen E. Bredon,
*Homotopical properties of fixed point sets of circle group actions. I*, Amer. J. Math.**91**(1969), 874–888. MR**259905**, DOI 10.2307/2373308 - Theodore Chang and Tor Skjelbred,
*The topological Schur lemma and related results*, Ann. of Math. (2)**100**(1974), 307–321. MR**375357**, DOI 10.2307/1971074 - Wu-chung Hsiang and Wu-yi Hsiang,
*Differentiable actions of compact connected classical groups. II*, Ann. of Math. (2)**92**(1970), 189–223. MR**265511**, DOI 10.2307/1970834 - Wu-yi Hsiang,
*Structural theorems for topological actions of $Z_{2}$-tori on real, complex and quaternionic projective spaces*, Comment. Math. Helv.**49**(1974), 479–491; addendum, ibid. 50 (1975), 277–279. MR**375362**, DOI 10.1007/BF02566743 - Wu-yi Hsiang,
*On characteristic classes of compact homogeneous spaces and their applications in compact transformation groups. I*, Bol. Soc. Brasil. Mat.**10**(1979), no. 2, 87–161. MR**607008**, DOI 10.1007/BF02584633 - Wu-yi Hsiang,
*Cohomology theory of topological transformation groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85, Springer-Verlag, New York-Heidelberg, 1975. MR**0423384** - J. C. Su,
*Periodic transformations on the product of two spheres*, Trans. Amer. Math. Soc.**112**(1964), 369–380. MR**163309**, DOI 10.1090/S0002-9947-1964-0163309-8
M. Wang, Doctoral Dissertation, Stanford University, 1980.
- McKenzie Y. Wang,
*On actions of regular type on complex Stiefel manifolds*, Trans. Amer. Math. Soc.**272**(1982), no. 2, 589–610. MR**662055**, DOI 10.1090/S0002-9947-1982-0662055-2

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**272**(1982), 611-628 - MSC: Primary 57S15; Secondary 57S25
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662056-4
- MathSciNet review: 662056