Generalization of continuous posets
HTML articles powered by AMS MathViewer
- by Dan Novak
- Trans. Amer. Math. Soc. 272 (1982), 645-667
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662058-8
- PDF | Request permission
Abstract:
In this paper we develop a general theory of continuity in partially ordered sets. Among the interesting special cases of this theory is the theory of continuous lattices developed by D. Scott, J. Lawson and others.References
- Hans-J. Bandelt and Marcel Erné, Representations and embeddings of $M$-distributive lattices, Houston J. Math. 10 (1984), no. 3, 315–324. MR 763234
- Garrett Birkhoff, Lattice Theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR 0029876 —, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967.
- Günter Bruns, Distributivität und subdirekte Zerlegbarkeit vollständiger Verbände, Arch. Math. (Basel) 12 (1961), 61–66 (German). MR 124247, DOI 10.1007/BF01650523
- Alan Day, Filter monads, continuous lattices and closure systems, Canadian J. Math. 27 (1975), 50–59. MR 367013, DOI 10.4153/CJM-1975-008-8 M. Erné, Homomorphisms of $m$-generated and $m$-distributive posets (to appear).
- Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, and Dana S. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin-New York, 1980. MR 614752 K. H. Hofmann and A. R. Stralka, The algebraic theory of compact Lawson semilattices, Dissertationes Math. 137 (1976), 1-58.
- Siegfried L. Jansen, Subdirect representation of partially ordered sets, J. London Math. Soc. (2) 17 (1978), no. 2, 195–202. MR 485597, DOI 10.1112/jlms/s2-17.2.195
- Jimmie D. Lawson, The duality of continuous posets, Houston J. Math. 5 (1979), no. 3, 357–386. MR 559976
- George Markowsky, Chain-complete posets and directed sets with applications, Algebra Universalis 6 (1976), no. 1, 53–68. MR 398913, DOI 10.1007/BF02485815
- Jorge Martinez, Unique factorization in partially ordered sets, Proc. Amer. Math. Soc. 33 (1972), 213–220. MR 292723, DOI 10.1090/S0002-9939-1972-0292723-5
- George N. Raney, Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677–680. MR 52392, DOI 10.1090/S0002-9939-1952-0052392-3
- George N. Raney, A subdirect-union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4 (1953), 518–522. MR 58568, DOI 10.1090/S0002-9939-1953-0058568-4
- George N. Raney, Tight Galois connections and complete distributivity, Trans. Amer. Math. Soc. 97 (1960), 418–426. MR 120171, DOI 10.1090/S0002-9947-1960-0120171-3
- Jürgen Schmidt, Universal and internal properties of some extensions of partially ordered sets, J. Reine Angew. Math. 253 (1972), 28–42. MR 300945, DOI 10.1515/crll.1972.253.28
- Jürgen Schmidt, Universal and internal properties of some completions of $k$-join-semilattices and $k$-join-distributive partially ordered sets, J. Reine Angew. Math. 255 (1972), 8–22. MR 297654, DOI 10.1515/crll.1972.255.8
- Dana Scott, Continuous lattices, Toposes, algebraic geometry and logic (Conf., Dalhousie Univ., Halifax, N.S., 1971) Lecture Notes in Math., Vol. 274, Springer, Berlin, 1972, pp. 97–136. MR 0404073
- J. B. Wright, E. G. Wagner, and J. W. Thatcher, A uniform approach to inductive posets and inductive closure, Mathematical foundations of computer science (Proc. Sixth Sympos., Tatranská Lomnica, 1977) Lecture Notes in Comput. Sci., Vol. 53, Springer, Berlin, 1977, pp. 192–212. MR 0491374
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 645-667
- MSC: Primary 06A15; Secondary 06A10
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662058-8
- MathSciNet review: 662058