Quaternionic Kaehler manifolds
HTML articles powered by AMS MathViewer
- by Lee Whitt
- Trans. Amer. Math. Soc. 272 (1982), 677-692
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662060-6
- PDF | Request permission
Abstract:
The topological classification of $4$- and $8$- (real) dimensional compact quaternionic Kaehler manifolds is given. There is only the torus in dimension 4. In dimension 8, there are 12 homeomorphism classes; representatives are given explicitly.References
- Louis Auslander, Four dimensional compact locally hermitian manifolds, Trans. Amer. Math. Soc. 84 (1957), 379–391. MR 83798, DOI 10.1090/S0002-9947-1957-0083798-3
- L. Auslander and M. Kuranishi, On the holonomy group of locally Euclidean spaces, Ann. of Math. (2) 65 (1957), 411–415. MR 86341, DOI 10.2307/1970053
- Ludwig Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70 (1911), no. 3, 297–336 (German). MR 1511623, DOI 10.1007/BF01564500
- S. S. Chern, Complex manifolds without potential theory, Van Nostrand Mathematical Studies, No. 15, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225346
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940
- K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math. (2) 60 (1954), 28–48. MR 68871, DOI 10.2307/1969701 A. Kurosh, Lectures on general algebra, Chelsea, New York, 1965.
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Morio Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jpn. J. Math. 26 (1956), 43–77. MR 95290, DOI 10.4099/jjm1924.26.0_{4}3
- Andrew John Sommese, Quaternionic manifolds, Math. Ann. 212 (1974/75), 191–214. MR 425827, DOI 10.1007/BF01357140
- Norman Steenrod, The topology of fibre bundles, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. Reprint of the 1957 edition; Princeton Paperbacks. MR 1688579
- Joseph A. Wolf, Spaces of constant curvature, 2nd ed., University of California, Department of Mathematics, Berkeley, Calif., 1972. MR 0343213
- Shing Tung Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799. MR 451180, DOI 10.1073/pnas.74.5.1798
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 677-692
- MSC: Primary 53C25; Secondary 53C55
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662060-6
- MathSciNet review: 662060