## Quaternionic Kaehler manifolds

HTML articles powered by AMS MathViewer

- by Lee Whitt PDF
- Trans. Amer. Math. Soc.
**272**(1982), 677-692 Request permission

## Abstract:

The topological classification of $4$- and $8$- (real) dimensional compact quaternionic Kaehler manifolds is given. There is only the torus in dimension 4. In dimension 8, there are 12 homeomorphism classes; representatives are given explicitly.## References

- Louis Auslander,
*Four dimensional compact locally hermitian manifolds*, Trans. Amer. Math. Soc.**84**(1957), 379–391. MR**83798**, DOI 10.1090/S0002-9947-1957-0083798-3 - L. Auslander and M. Kuranishi,
*On the holonomy group of locally Euclidean spaces*, Ann. of Math. (2)**65**(1957), 411–415. MR**86341**, DOI 10.2307/1970053 - Ludwig Bieberbach,
*Über die Bewegungsgruppen der Euklidischen Räume*, Math. Ann.**70**(1911), no. 3, 297–336 (German). MR**1511623**, DOI 10.1007/BF01564500 - S. S. Chern,
*Complex manifolds without potential theory*, Van Nostrand Mathematical Studies, No. 15, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0225346** - Shoshichi Kobayashi and Katsumi Nomizu,
*Foundations of differential geometry. Vol. I*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR**1393940** - K. Kodaira,
*On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties)*, Ann. of Math. (2)**60**(1954), 28–48. MR**68871**, DOI 10.2307/1969701
A. Kurosh, - Serge Lang,
*Algebra*, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR**0197234** - Morio Obata,
*Affine connections on manifolds with almost complex, quaternion or Hermitian structure*, Jpn. J. Math.**26**(1956), 43–77. MR**95290**, DOI 10.4099/jjm1924.26.0_{4}3 - Andrew John Sommese,
*Quaternionic manifolds*, Math. Ann.**212**(1974/75), 191–214. MR**425827**, DOI 10.1007/BF01357140 - Norman Steenrod,
*The topology of fibre bundles*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. Reprint of the 1957 edition; Princeton Paperbacks. MR**1688579** - Joseph A. Wolf,
*Spaces of constant curvature*, 2nd ed., University of California, Department of Mathematics, Berkeley, Calif., 1972. MR**0343213** - Shing Tung Yau,
*Calabi’s conjecture and some new results in algebraic geometry*, Proc. Nat. Acad. Sci. U.S.A.**74**(1977), no. 5, 1798–1799. MR**451180**, DOI 10.1073/pnas.74.5.1798

*Lectures on general algebra*, Chelsea, New York, 1965.

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**272**(1982), 677-692 - MSC: Primary 53C25; Secondary 53C55
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662060-6
- MathSciNet review: 662060