Multiple critical points of perturbed symmetric functionals
HTML articles powered by AMS MathViewer
- by Paul H. Rabinowitz
- Trans. Amer. Math. Soc. 272 (1982), 753-769
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662065-5
- PDF | Request permission
Abstract:
Variational problems which are invariant under a group of symmetries often possess multiple solutions. This paper studies the effect of perturbations which are not small and which destroy the symmetry for two classes of such problems and shows how multiple solutions persist despite the perturbation.References
- Charles V. Coffman, A minimum-maximum principle for a class of non-linear integral equations, J. Analyse Math. 22 (1969), 391–419. MR 249983, DOI 10.1007/BF02786802 J. Hemple, Superlinear variational boundary value problems and nonuniqueness, Thesis, Univ. of New England, Australia, 1970.
- Antonio Ambrosetti, On the existence of multiple solutions for a class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova 49 (1973), 195–204. MR 336068
- Paul H. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. Math. J. 23 (1973/74), 729–754. MR 333442, DOI 10.1512/iumj.1974.23.23061
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- Vieri Benci, Some critical point theorems and applications, Comm. Pure Appl. Math. 33 (1980), no. 2, 147–172. MR 562548, DOI 10.1002/cpa.3160330204
- Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157–184. MR 467823, DOI 10.1002/cpa.3160310203 —, On large norm periodic solutions of some differential equations, Ergodic Theory and Dynamical Systems, Proc. Sympos. Yi (Maryland) (A. Katok, ed.), pp. 79-80 (to appear).
- Abbas Bahri and Henri Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), no. 1, 1–32. MR 621969, DOI 10.1090/S0002-9947-1981-0621969-9
- Michael Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980), no. 3-4, 335–364. MR 595426, DOI 10.1007/BF01299609 G.-C. Dong and S. Li, On the existence of infinitely many solutions of the Dirichlet problem for some nonlinear elliptic equations, Univ. of Wisconsin Math. Research Center Tech. Rep. N02161, Dec., 1980.
- Abbas Bahri, Topological results on a certain class of functionals and application, J. Functional Analysis 41 (1981), no. 3, 397–427. MR 619960, DOI 10.1016/0022-1236(81)90083-5
- Abbas Bahri and Henri Berestycki, Existence d’une infinité de solutions périodiques pour certains systèmes hamiltoniens en présence d’un terme de contrainte, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 5, 315–318 (French, with English summary). MR 608843
- P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974) Edizioni Cremonese, Rome, 1974, pp. 139–195. MR 0464299
- Edward R. Fadell and Paul H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139–174. MR 478189, DOI 10.1007/BF01390270
- J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Notes by H. Fattorini, R. Nirenberg and H. Porta, with an additional chapter by Hermann Karcher. MR 0433481
- L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115–162. MR 109940
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- David C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J. 22 (1972/73), 65–74. MR 296777, DOI 10.1512/iumj.1972.22.22008
- S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36–39 (Russian). MR 0192184 E. R. Fadell, S. Husseini and P. H. Rabinowitz, On $S^1$ versions of the Borsuk-Ulam Theorem, Univ. of Wisconsin Math. Res. Center Tech. Rep., 1981.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 753-769
- MSC: Primary 35J60; Secondary 35B20, 49B50, 58E05
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662065-5
- MathSciNet review: 662065