Rational LS category and its applications
HTML articles powered by AMS MathViewer
- by Yves Félix and Stephen Halperin
- Trans. Amer. Math. Soc. 273 (1982), 1-37
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664027-0
- PDF | Request permission
Abstract:
Let $S$ be a $1$-connected CW-complex of finite type and put ${\text {ca}}{{\text {t}}_0}(S) =$ Lusternik-Schnirelmann category of the localization ${S_{\mathbf {Q}}}$. This invariant is characterized in terms of the minimal model of $S$. It is shown that if $\phi :S \to T$ is injective on ${\pi _ \ast } \otimes {\mathbf {Q}}$ then ${\text {ca}}{{\text {t}}_0}(S) \leqslant {\text {ca}}{{\text {t}}_0}(T)$, and this result is strengthened when $\phi$ is the fibre inclusion of a fibration. It is also shown that if ${H^ \ast }(S;{\mathbf {Q}}) < \infty$ then either ${\pi _ \ast }(S) \otimes {\mathbf {Q}} < \infty$ or the groups ${\pi _k}(S) \otimes {\mathbf {Q}}$ grow exponentially with $k$.References
- D. Anick, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1980.
- H. J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), no. 3, 219–242. MR 431172, DOI 10.1007/BF01425239
- I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math. 5 (1961), 99–130. MR 126277, DOI 10.1215/ijm/1255629648
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 382702, DOI 10.1007/BF01389853
- Yves Félix, Modèles bifiltrés: une plaque tournante en homotopie rationnelle, Canadian J. Math. 33 (1981), no. 6, 1448–1458 (French). MR 645238, DOI 10.4153/CJM-1981-111-1
- John Friedlander and Stephen Halperin, Distinct representatives, varieties and rational homotopy, J. Number Theory 11 (1979), no. 3, S. Chowla Anniversary Issue, 321–323. MR 544260, DOI 10.1016/0022-314X(79)90005-2
- T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417–427. MR 229240, DOI 10.1215/ijm/1256054563
- W. J. Gilbert, Some examples for weak category and conilpotency, Illinois J. Math. 12 (1968), 421–432. MR 231375, DOI 10.1215/ijm/1256054110
- Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729–756. MR 275424, DOI 10.2307/2373349
- Karsten Grove, Stephen Halperin, and Micheline Vigué-Poirrier, The rational homotopy theory of certain path spaces with applications to geodesics, Acta Math. 140 (1978), no. 3-4, 277–303. MR 496895, DOI 10.1007/BF02392310
- Stephen Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173–199. MR 461508, DOI 10.1090/S0002-9947-1977-0461508-8 —, Lectures on minimal models, mimeographed notes, Université de Lille I, 1977.
- Stephen Halperin, Rational fibrations, minimal models, and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199–224. MR 515558, DOI 10.1090/S0002-9947-1978-0515558-4
- Stephen Halperin and James Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), no. 3, 233–279. MR 539532, DOI 10.1016/0001-8708(79)90043-4
- I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348. MR 516214, DOI 10.1016/0040-9383(78)90002-2
- J.-M. Lemaire, “Autopsie d’un meurtre” dans l’homologie d’une algèbre de chaînes, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 1, 93–100 (French, with English summary). MR 500930, DOI 10.24033/asens.1341
- Jean-Michel Lemaire and François Sigrist, Sur les invariants d’homotopie rationnelle liés à la L. S. catégorie, Comment. Math. Helv. 56 (1981), no. 1, 103–122 (French). MR 615618, DOI 10.1007/BF02566201 L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationneles, Hermann, Paris, 1934.
- W. S. Massey, Some problems in algebraic topology and the theory of fibre bundles, Ann. of Math. (2) 62 (1955), 327–359. MR 74828, DOI 10.2307/1970068
- John Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272–284. MR 77122, DOI 10.2307/1969609
- John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 77932, DOI 10.2307/1970012 J. C. Moore, Algèbre homologique et homologie des espaces classifiants, Séminaire Cartan 1959/60, Exposé 7, Paris. A. Oukidi, Sur l’homologie d’une algèbre différentielle (de Lie), Thèse ($3^{e}$ cycle), Université de Nice, 1978.
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Graham Hilton Toomer, Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z. 138 (1974), 123–143. MR 356037, DOI 10.1007/BF01214229
- Graham Hilton Toomer, Topological localization, category and cocategory, Canadian J. Math. 27 (1975), 319–322. MR 370571, DOI 10.4153/CJM-1975-038-4
- George W. Whitehead, The homology suspension, Colloque de topologie algébrique, Louvain, 1956, Georges Thone, Liège; Masson & Cie, Paris, 1957, pp. 89–95. MR 0094794
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 1-37
- MSC: Primary 55P62; Secondary 55M30, 55P50
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664027-0
- MathSciNet review: 664027