Contractive projections on $C_{0}(K)$
HTML articles powered by AMS MathViewer
- by Yaakov Friedman and Bernard Russo
- Trans. Amer. Math. Soc. 273 (1982), 57-73
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664029-4
- PDF | Request permission
Abstract:
We show that the range of a norm one projection on a commutative ${C^\ast }$-algebra has a ternary product structure (Theorem 2). We describe and characterize all such projections in terms of extreme points in the unit ball of the image of the dual (Theorem 1). We give necessary and sufficient conditions for the range to be isometric to a ${C^\ast }$-algebra (Theorem 4) and we show that the range is a ${C_\sigma }$-space (Theorem 5).References
- T. Andô, Contractive projections in $L_{p}$ spaces, Pacific J. Math. 17 (1966), 391–405. MR 192340, DOI 10.2140/pjm.1966.17.391
- Jonathan Arazy and Yaakov Friedman, Contractive projections in $C_{1}$ and $C_{\infty }$, Mem. Amer. Math. Soc. 13 (1978), no. 200, iv+165. MR 481219, DOI 10.1090/memo/0200 W. G. Bade, The Banach space $C(S)$, Lecture Notes, Aarhus Univ., vol. 26, 1971.
- Itzhak Bars and Murat Günaydin, Construction of Lie algebras and Lie superalgebras from ternary algebras, J. Math. Phys. 20 (1979), no. 9, 1977–1993. MR 546254, DOI 10.1063/1.524309
- Ehrhard Behrends, $M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509, DOI 10.1007/BFb0063153
- S. J. Bernau and H. Elton Lacey, Bicontractive projections and reordering of $L_{p}$-spaces, Pacific J. Math. 69 (1977), no. 2, 291–302. MR 487416, DOI 10.2140/pjm.1977.69.291
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029, DOI 10.1007/978-3-642-65669-9
- R. G. Douglas, Contractive projections on an ${\mathfrak {L}}_{1}$ space, Pacific J. Math. 15 (1965), 443–462. MR 187087, DOI 10.2140/pjm.1965.15.443
- Edward G. Effros and Erling Størmer, Positive projections and Jordan structure in operator algebras, Math. Scand. 45 (1979), no. 1, 127–138. MR 567438, DOI 10.7146/math.scand.a-11830
- I. Glicksberg, Some uncomplemented function algebras, Trans. Amer. Math. Soc. 111 (1964), 121–137. MR 161175, DOI 10.1090/S0002-9947-1964-0161175-8
- Y. Friedman and B. Russo, Contractive projections on $C^{\ast }$-algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 615–618. MR 679548
- M. Günaydin, Quadratic Jordan formulation of quantum mechanics and construction of Lie (super) algebras from Jordan (super) algebras, Group theoretical methods in physics (Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979) Ann. Israel Phys. Soc., vol. 3, Hilger, Bristol, 1980, pp. 279–296. MR 626844
- Magnus R. Hestenes, A ternary algebra with applications to matrices and linear transformations, Arch. Rational Mech. Anal. 11 (1962), 138–194. MR 150166, DOI 10.1007/BF00253936
- J. L. Kelley, Averaging operators on $C_{\infty }(X)$, Illinois J. Math. 2 (1958), 214–223. MR 103409, DOI 10.1215/ijm/1255381343
- Gunnar Hans Olsen, On the classification of complex Lindenstrauss spaces, Math. Scand. 35 (1974), 237–258. MR 367626, DOI 10.7146/math.scand.a-11550
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- Daniel E. Wulbert, Some complemented function spaces in $C(X)$, Pacific J. Math. 24 (1968), 589–602. MR 223868, DOI 10.2140/pjm.1968.24.589
- Daniel E. Wulbert, Averaging projections, Illinois J. Math. 13 (1969), 689–693. MR 256176
- Daniel E. Wulbert, Convergence of operators and Korovkin’s theorem, J. Approximation Theory 1 (1968), 381–390. MR 235370, DOI 10.1016/0021-9045(68)90016-6
- Joram Lindenstrauss and Daniel E. Wulbert, On the classification of the Banach spaces whose duals are $L_{1}$ spaces, J. Functional Analysis 4 (1969), 332–349. MR 0250033, DOI 10.1016/0022-1236(69)90003-2 H. Zettl, Charakterisierung ternärer Operatorenringe, Doctoral Dissertation, Universität Erlangen-Nürnberg, 1979.
- Robert E. Atalla, On the ergodic theory of contractions, Rev. Colombiana Mat. 10 (1976), no. 2, 75–81. MR 0417817
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 57-73
- MSC: Primary 46L05; Secondary 17C65, 46J05
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664029-4
- MathSciNet review: 664029