The asymptotic expansion for the trace of the heat kernel on a generalized surface of revolution
HTML articles powered by AMS MathViewer
- by Ping Charng Lue
- Trans. Amer. Math. Soc. 273 (1982), 93-110
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664031-2
- PDF | Request permission
Abstract:
Let $M$ be a smooth compact Riemannian manifold without boundary. Let $I$ be an open interval. Let $h(r)$ be a smooth positive function. Let $g$ be the metric on $M$. Consider the fundamental solution $E(x,y,{r_1},{r_2};t)$ of the heat equation on $M \times I$ with metric ${h^2}(r)g + dr \otimes dr$ (when $E$ exists globally we call it the heat kernel on $M \times I$). The coefficients of the asymptotic expansion of the trace $E$ are studied and expressed in terms of corresponding coefficients on the basis $M$. It is fulfilled by means of constructing a parametrix for $E$ which is different from a parametrix in the standard form. One important result is that each of the former coefficients is a linear combination of the latter coefficients.References
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313
- Robert S. Cahn and Joseph A. Wolf, Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one, Comment. Math. Helv. 51 (1976), no. 1, 1–21. MR 397801, DOI 10.1007/BF02568140
- Jeff Cheeger and Shing Tung Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), no. 4, 465–480. MR 615626, DOI 10.1002/cpa.3160340404
- I. M. Gel′fand and L. A. Dikiĭ, Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations, Uspehi Mat. Nauk 30 (1975), no. 5(185), 67–100 (Russian). MR 0508337
- Peter B. Gilkey, The index theorem and the heat equation, Mathematics Lecture Series, No. 4, Publish or Perish, Inc., Boston, Mass., 1974. Notes by Jon Sacks. MR 0458504
- H. A. Lauwerier, Asymptotic analysis, Mathematical Centre Tracts, No. 54, Mathematisch Centrum, Amsterdam, 1974. MR 0467123
- S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256. MR 31145, DOI 10.4153/cjm-1949-021-5
- S. Minakshisundaram, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. (N.S.) 17 (1953), 159–165 (1954). MR 61750
- A. H. Zemanian, Generalized integral transformations, Pure and Applied Mathematics, Vol. XVIII, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968. MR 0423007
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 93-110
- MSC: Primary 58G11; Secondary 35K05
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664031-2
- MathSciNet review: 664031