When is the natural map $X\rightarrow \Omega \Sigma X$ a cofibration?
HTML articles powered by AMS MathViewer
- by L. Gaunce Lewis
- Trans. Amer. Math. Soc. 273 (1982), 147-155
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664034-8
- PDF | Request permission
Abstract:
It is shown that a map $f:X \to F(A,W)$ is a cofibration if its adjoint $f:X \wedge A \to W$ is a cofibration and $X$ and $A$ are locally equiconnected (LEC) based spaces with $A$ compact and nontrivial. Thus, the suspension map $\eta :X \to \Omega \sum X$ is a cofibration if $X$ is LEC. Also included is a new, simpler proof that C.W. complexes are LEC. Equivariant generalizations of these results are described.References
- R. R. Bruner, L. G. Lewis, Jr., J. P. May, J. E. McClure and M. Steinberger, ${H_\infty }$ ring spectra and equivariant stable homotopy theory, Lecture Notes in Math., Springer-Verlag, Berlin and New York (in preparation).
- J. Dugundji, Locally equiconnected spaces and absolute neighborhood, Fund. Math. 57 (1965), 187–193. MR 184202, DOI 10.4064/fm-57-2-187-193
- Eldon Dyer and S. Eilenberg, An adjunction theorem for locally equiconnected spaces, Pacific J. Math. 41 (1972), 669–685. MR 319143, DOI 10.2140/pjm.1972.41.669 L. G. Lewis, Jr., The stable category and generalized Thom spectra, Thesis, University of Chicago, 1978.
- Joachim Lillig, A union theorem for cofibrations, Arch. Math. (Basel) 24 (1973), 410–415. MR 334193, DOI 10.1007/BF01228231
- J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. MR 370579, DOI 10.1090/memo/0155 —, The homotopical foundations of algebraic topology, Monograph London Math. Soc., Academic Press, New York (in preparation).
- M. C. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273–298. MR 251719, DOI 10.1090/S0002-9947-1969-0251719-4
- Arne Strøm, Note on cofibrations. II, Math. Scand. 22 (1968), 130–142 (1969). MR 243525, DOI 10.7146/math.scand.a-10877
- Arne Strøm, The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972), 435–441. MR 321082, DOI 10.1007/BF01304912
- Rainer M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. (Basel) 22 (1971), 545–555. MR 300277, DOI 10.1007/BF01222616
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7
- Oswald Wyler, Convenient categories for topology, General Topology and Appl. 3 (1973), 225–242. MR 324622, DOI 10.1016/0016-660X(72)90014-1
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 147-155
- MSC: Primary 55P05
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664034-8
- MathSciNet review: 664034