No division implies chaos
HTML articles powered by AMS MathViewer
- by Tien Yien Li, Michał Misiurewicz, Giulio Pianigiani and James A. Yorke
- Trans. Amer. Math. Soc. 273 (1982), 191-199
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664037-3
- PDF | Request permission
Abstract:
Let $I$ be a closed interval in ${R^1}$ and $f:I \to I$ be continuous. Let ${x_0} \in I$ and \[ {x_{i + 1}} = f({x_i})\quad {\text {for}}\;i > 0.\] We say there is no division for $({x_1},{x_2}, \ldots ,{x_n})$ if there is no $a \in I$ such that ${x_j} < a$ for all $j$ even and ${x_j} < a$ for all $j$ odd. The main result of this paper proves the simple statement: no division implies chaos. Also given here are some converse theorems, detailed estimates of the existing periods, and examples which show that, under our conditions, one cannot do any better.References
- Louis Block, Periodic orbits of continuous mappings of the circle, Trans. Amer. Math. Soc. 260 (1980), no. 2, 553–562. MR 574798, DOI 10.1090/S0002-9947-1980-0574798-8
- Louis Block, John Guckenheimer, MichałMisiurewicz, and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR 591173
- T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
- Tien Yien Li, MichałMisiurewicz, Giulio Pianigiani, and James A. Yorke, Odd chaos, Phys. Lett. A 87 (1981/82), no. 6, 271–273. MR 643455, DOI 10.1016/0375-9601(82)90692-2
- O. M. Šarkovs′kiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Ž. 16 (1964), 61–71 (Russian, with English summary). MR 0159905
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 191-199
- MSC: Primary 28D20; Secondary 58F13
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664037-3
- MathSciNet review: 664037