Topological invariant means on the von Neumann algebra $\textrm {VN}(G)$
HTML articles powered by AMS MathViewer
- by Ching Chou
- Trans. Amer. Math. Soc. 273 (1982), 207-229
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664039-7
- PDF | Request permission
Abstract:
Let $VN(G)$ be the von Neumann algebra generated by the left regular representation of a locally compact group $G$, $A(G)$ the Fourier algebra of $G$ and $TIM(\hat G)$ the set of topological invariant means on $VN(G)$. Let ${\mathcal {F}_1} = \{ \mathcal {O} \in {({l^\infty })^ \ast }\} :\mathcal {O} \geqslant 0,\;||\mathcal {O}|| = 1$ and $\mathcal {O}(f) = 0\;{\text {if}}\;f \in {l^\infty }$ and $f(n) \to 0\}$. We show that if $G$ is nondiscrete then there exists a linear isometry $\Lambda$ of ${({l^\infty })^ \ast }$ into $VN{(G)^ \ast }$ such that $\Lambda ({\mathcal {F}_1}) \subset TIM(\hat G)$. When $G$ is further assumed to be second countable then ${\mathcal {F}_1}$ can be embedded into some predescribed subsets of $TIM(\hat G)$. To prove these embedding theorems for second countable groups we need the existence of a sequence of means $\{ {u_n}\}$ in $A(G)$ such that their supports in $VN(G)$ are mutually orthogonal and $||u{u_n} - {u_n}|| \to 0\;{\text {if}}\;u$ is a mean in $A(G)$. Let $F(\hat G)$ be the space of all $T \in VN(G)$ such that $m(T)$ is a constant as $m$ runs through $TIM(\hat G)$ and let $W(\hat G)$ be the space of weakly almost periodic elements in $VN(G)$. We show that the following conditions are equivalent: (i) $G$ is discrete, (ii) $F(\hat G)$ is an algebra and (iii) $(A(G) \cdot VN(G)) \cap F(\hat G) \subset W(\hat G)$.References
- Ching Chou, On topologically invariant means on a locally compact group, Trans. Amer. Math. Soc. 151 (1970), 443–456. MR 269780, DOI 10.1090/S0002-9947-1970-0269780-8
- Ching Chou, The multipliers of the space of almost convergent sequences, Illinois J. Math. 16 (1972), 687–694. MR 315365
- Ching Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc. 206 (1975), 175–200. MR 394062, DOI 10.1090/S0002-9947-1975-0394062-8
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- Charles F. Dunkl and Donald E. Ramirez, Existence and nonuniqueness of invariant means on ${\scr L}^{\infty }(\hat G)$, Proc. Amer. Math. Soc. 32 (1972), 525–530. MR 296609, DOI 10.1090/S0002-9939-1972-0296609-1
- Charles F. Dunkl and Donald E. Ramirez, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc. 185 (1973), 501–514. MR 372531, DOI 10.1090/S0002-9947-1973-0372531-2
- William R. Emerson, Large symmetric sets in amenable groups and the individual ergodic theorem, Amer. J. Math. 96 (1974), 242–247. MR 354925, DOI 10.2307/2373631
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32–48. MR 144197
- Edmond E. Granirer, Functional analytic properties of extremely amenable semigroups, Trans. Amer. Math. Soc. 137 (1969), 53–75. MR 239408, DOI 10.1090/S0002-9947-1969-0239408-3
- Edmond E. Granirer, Exposed points of convex sets and weak sequential convergence, Memoirs of the American Mathematical Society, No. 123, American Mathematical Society, Providence, R.I., 1972. Applications to invariant means, to existence of invariant measures for a semigroup of Markov operators etc. . MR 0365090
- Edmond E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371–382. MR 336241, DOI 10.1090/S0002-9947-1974-0336241-0
- Edmond E. Granirer, Properties of the set of topologically invariant means on P. Eymard’s $W^{\ast }$-algebra $\textrm {VN}(G)$, Nederl. Akad. Wetensch. Proc. Ser. A 77=Indag. Math. 36 (1974), 116–121. MR 0358217, DOI 10.1016/1385-7258(74)90001-8 —, Density theorems for some linear subspaces and some ${C^ \ast }$-subalgebras of $VN(G)$, Symposia Mathematica 22 (1977), Istituto Nazionale di Alta Mathematica, pp. 61-70.
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- A. Hulanicki, Means and Følner condition on locally compact groups, Studia Math. 27 (1966), 87–104. MR 195982, DOI 10.4064/sm-27-2-87-104
- Maria Klawe, On the dimension of left invariant means and left thick subsets, Trans. Amer. Math. Soc. 231 (1977), no. 2, 507–518. MR 447970, DOI 10.1090/S0002-9947-1977-0447970-5
- Maria M. Klawe, Dimensions of the sets of invariant means of semigroups, Illinois J. Math. 24 (1980), no. 2, 233–243. MR 575064
- Anthony To Ming Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39–59. MR 531968, DOI 10.1090/S0002-9947-1979-0531968-4
- G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. MR 27868, DOI 10.1007/BF02393648 I. Namioka, Følner’s condition for amenable semigroups, Math. Scand. 15 (1964), 18-28.
- P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285–291. MR 304553, DOI 10.1090/S0002-9947-1972-0304553-0
- Shôichirô Sakai, On topological properties of $W^*$-algebras, Proc. Japan Acad. 33 (1957), 439–444. MR 98992 —, ${C^\ast }$-algebras and ${W^\ast }$-algebras, Springer-Verlag, Berlin and New York, 1971.
- James C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351–363. MR 249536, DOI 10.1090/S0002-9947-1969-0249536-4
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 207-229
- MSC: Primary 22D25; Secondary 43A07, 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664039-7
- MathSciNet review: 664039