On the double suspension homomorphism at odd primes
HTML articles powered by AMS MathViewer
- by J. R. Harper and H. R. Miller
- Trans. Amer. Math. Soc. 273 (1982), 319-331
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664045-2
- PDF | Request permission
Abstract:
We work with the ${E_1}$-term for spheres and the stable Moore space, given by the $\Lambda$-algebra at odd primes. Writing $W(n) = \Lambda (2n + 1)/\Lambda (2n - 1)$ and $M(0) = {H_ \ast }({S^0}{ \cup _p}{e^1})$, we construct compatible maps ${f_n} \cdot W(n) \to M(0)\tilde \otimes \Lambda$ and prove the Metastability Theorem: in homology ${f_n}$ induces an isomorphism for $\sigma < 2({p^2} - 1)(s - 2) + pqn - 2p - 2$ where $\sigma = \text {stem degree}$, $s = \text {homological degree }$ resulting from the bigrading of $\Lambda$ and $q = 2p - 2$. There is an operator ${\upsilon _1}$ corresponding to the Adams stable self-map of the Moore space and ${\upsilon _1}$ extends to $W(n)$. A corollary of the Metastability Theorem and the Localization Theorem of the second author is that the map ${f_n}$ induces an isomorphism on homology after inverting ${\upsilon _1}$.References
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21β71. MR 198470, DOI 10.1016/0040-9383(66)90004-8
- A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The $\textrm {mod}-p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331β342. MR 199862, DOI 10.1016/0040-9383(66)90024-3
- A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79β106. MR 283801, DOI 10.1016/0040-9383(72)90024-9 J. Harper, Rank $2\operatorname {mod} 3$ $H$-spaces, Canad. Math. Soc. Conf. Proc., Current Trends in Algebraic Topology, Western Ontario, 1981.
- D. C. Johnson, H. R. Miller, W. S. Wilson, and R. S. Zahler, Boundary homomorphisms in the generalized Adams spectral sequence and the nontriviality of infinitely many $\gamma _{t}$ in stable homotopy, Conference on homotopy theory (Evanston, Ill., 1974) Notas Mat. Simpos., vol. 1, Soc. Mat. Mexicana, MΓ©xico, 1975, pp.Β 47β63. MR 761720
- Arunas Liulevicius, Zeroes of the cohomology of the Steenrod algebra, Proc. Amer. Math. Soc. 14 (1963), 972β976. MR 157383, DOI 10.1090/S0002-9939-1963-0157383-7
- Mark Mahowald, On the double suspension homomorphism, Trans. Amer. Math. Soc. 214 (1975), 169β178. MR 438333, DOI 10.1090/S0002-9947-1975-0438333-5
- Haynes R. Miller, A localization theorem in homological algebra, Math. Proc. Cambridge Philos. Soc. 84 (1978), no.Β 1, 73β84. MR 494105, DOI 10.1017/S0305004100054906
- Haynes Miller and Clarence Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981), no.Β 3, 293β307. MR 629336, DOI 10.1016/0022-4049(81)90104-3
- Martin C. Tangora, Some remarks on the lambda algebras, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp.Β 476β487. MR 513587 F. R. Cohen, The unstable decomposition of ${\Omega ^2}{\Sigma ^2}X$ and its applications (to appear).
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 319-331
- MSC: Primary 55T15; Secondary 55P40, 55Q25, 55Q45, 55U99
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664045-2
- MathSciNet review: 664045