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IF ALL NORMAL MOORE SPACES ARE METRIZABLE,
THEN THERE IS AN INNER MODEL
WITH A MEASURABLE CARDINAL

BY

WILLIAM G. FLEISSNER1

Abstract. We formulate an axiom, HYP, and from it construct a normal, meta-

compact, nonmetrizable Moore space. HYP unifies two better known axioms. The

Continuum Hypothesis implies HYP; the nonexistence of an inner model with a

measurable cardinal implies HYP. As a consequence, it is impossible to replace

Nyikos' " provisional" solution to the normal Moore space problem with a solution

not involving large cardinals. Finally, we discuss how this space continues a process

of lowering the character for normal, not collectionwise normal spaces.

1. The normal Moore space problem. In 1931 F. B. Jones [J] asked whether all

normal Moore spaces were metrizable. Towards this end, he proved that assuming

2^0 < 2si, separable normal Moore spaces are metrizable. R. H. Bing [B] showed

that a Moore space is metrizable if and only if it is collectionwise normal (i.e. every

discrete collection of closed sets can be simultaneously separated by disjoint open

sets). If there is a Q-set, a special subset of the real line, then Example E of Bing's

paper is a separable, normal, nonmetrizable Moore space. Soon after the formula-

tion of Martin's Axiom, it was shown that MA„ implied the existence of <2-sets,

hence also of separable, normal, nonmetrizable Moore spaces [T,].

In 1974, the author [F,] showed that assuming Gödel's axiom of constructibility

normal spaces of character < 2*° are collectionwise Hausdorff. One consequence of

this result is that if there is a construction of a normal, nonmetrizable (equivalently,

not collectionwise normal) Moore space with ZFC, the usual axioms of set theory,

then the closed sets that cannot be separated are not points—in fact, not even

Lindelöf.

Above, we saw that it is consistent with ZFC that normal nonmetrizable Moore

spaces exist. P. J. Nyikos [N] gave a "provisional" solution to the normal Moore

space conjecture by showing that the Product Measure Extension Axioms (PMEA)

implies that normal Moore spaces are metrizable. Nyikos called this a " provisional"

solution because a large cardinal (specifically, a strongly compact cardinal) was used

in the construction of the model of ZFC + PMEA. Nyikos' result posed the question

of whether a large cardinal assumption is necessary (rather than just convenient) for
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366 W. G. FLEISSNER

the metrization theorem. See [T2] for a fuller history of the normal Moore space

problem.

In the summer of 1980, the author constructed a normal nonmetrizable Moore

space, not from a new axiom, but from the familiar Continuum Hypothesis (CH).

Later that year, he showed that the construction of the space can be done from a

general axiom of which CH is the simplest case. The importance of the other cases is

that they complete the solution of the normal Moore space problem. If the other

cases fail, then work of Jensen [DJ,JD] shows that there is an inner model with a

measurable cardinal. Hence, Nyikos' " provisional" solution cannot be improved by

deleting the large cardinal hypothesis.

2. Terminology and notation. Our topological terminology conforms with current

American usage, and can be found in [E, pp. 411-414], We will not need to define

Moore space; we will use instead the notion of uniform base which was defined by

Aleksandrov and shown equivalent to metacompact Moore space by Arhangel'skij

[E]. A family, §, of open sets is called a uniform base if for every infinite subset, %,

of S, if x E (]% then % is a neighborhood base at x.

Our set theoretic notation is standard and can be found in [Je] or [K]. In

particular,/| A denotes the function/restricted to the set A; an ordinal is the set of

smaller ordinals; to is the first infinite ordinal; and co, is the first uncountable

ordinal. We reserve a, ¿8, y, 8 for ordinals, i, j, k, l, m, n for natural numbers, and

k, X, n for infinite cardinals. We always use k for the cardinal satisfying HYP

(defined in §3); k+ is the cardinal successor of k. We definitely include the

possibility k = co, k+ = co,. We reserve p, a, t, v for finite functions whose domains

are natural numbers (i.e. the formalization of "finite sequence") and range contained

in the set E of HYP; /, g are functions with domain w (i.e. the formalization of

infinite sequence) and range contained in the set E of HYP.

3. Axiom HYP and large cardinals. We begin by presenting in detail the axiom

which we use to construct the space. Let HYP be the axiom which assets "There

exist k, (K„)„ew, and E satisfying

(la) (Kn)nEw is an increasing sequence of cardinals cofinal in k

(lb) for all« E w,2"»<k,

(2) 2  = k   ,

(3a) E E [8 E k+: cf(d) = co) and E is stationary in k+ ,

(3b) for all ¿8 < k+ , E n ß is not stationary in ¿6".

In informal language, (1) says that k is a strong limit cardinal of cofinality co, (2) says

that the K-continuum hypothesis holds, and (3) says that £ is a nonreflecting

stationary subset of w limits less than k+ .

Throughout this paper, let k, («„)„<=„, and E satisfy HYP ((l)-(3) above). Further,

we fix for each 8 E E an increasing sequence, (S,)ifEu, of nonlimit ordinals cofinal in

8. We will not use (3b) directly, but rather the following consequence.

Lemma 1. For all ß < k+ , there is a function, m^, from E n ¿8 to co such that for

each pair 8, -n of distinct elements of E Dß,ifm = max{w/3(ô), mß(-q)} then 8m ̂  ijm.
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Proof. By induction on ß. (In the case k = co, there is a straightforward,

noninductive proof, which is left to the reader.) If ¿8 = 0, let mß = 0 ; if ß = a + 2,

let mß = ma+x. So assume ß = aorß = a+ 1 where a is a limit ordinal. By (3b)

there is C, club in a and disjoint from E. In the case where ß = a + 1 and a G £,

we can assume {a,: i Eu] E C. Fix 8 E E n a; let y = sup(C Pi 8) and f =

inf(C - 8). Choose i so that ô, > y and wf(5) > i. Set ma(8) = i. If ß = a + 1 and

a £ E,setm0 - ma. If ¿8 = a + 1 and a £ E,setmß = maU {<a,0>}.

The existence of a normal, nonmetrizable Moore space follows from several extra

axioms of set theory. The first known was Martin's Axiom MAS . Subsequently,

Martin's Axiom was rephrased to include CH as a special case. CH is also a special

case of HYP. To see this, set k = co, k„ = n, and E = {8 E co,: 8 is a limit ordinal}.

Then (1) and (3) are automatically satisfied, and (2) is the ordinary Continuum

Hypothesis. We urge readers to consider only this case on first reading. After this

specific case is understood, it is straightforward to check that only properties (1), (2),

(3) were used in the proof.

While the case k = co is the simplest case, there are other cardinals k which could

satisfy HYP. To illustrate, we define inductively the Beth numbers. Set 30 = co;

2a+1 = 22«; and for limit ordinals y, 2y = sup{Ha: a < y}. Every cardinal of the

form Ss, where cf(8) — co satisfies (1).

The only known proof of the consistency of ZFC + NMSC (the assertion that all

normal Moore spaces are metrizable) is to start with a model with a strongly

compact cardinal, k, and then add k random reals. In the resulting model, PMEA

holds, and PMEA implies NMSC. It is natural to ask whether a large cardinal is

necessary to get a model of NMSC. The importance of the case HYP holding for

k > co is to show that a large cardinal is necessary. We do not construct the inner

model with a measurable cardinal in this paper, but simply use results of Jensen,

Dodd, and Mitchell. The basic situation is illustrated in Figure 1.

PMEA

I      Nyikos [N]

NMSC

Fleissner

HYP

strongly compact

cardinal

measurable

cardinal

generic extension

Kunen [F4]

inner model

Jensen-Dodd

[DJ, JD]

Figure 1

In the figure the downward arrows represent implications, while the horizontal

arrows represent constructions of one model of set theory from another. Thus they

represent that the consistency of one theory implies the consistency of another

theory. Mitchell has constructed from not HYP inner models with large cardinals

stronger than measurable [Mt].
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NMSC fails if there is just one k satisfying (1), (2), and (3). The construction of an

inner model with a large cardinal requires just one k > co where (1) holds but either

(2) or (3) fails. The failure of (2) or (3) at every of the proper class of k 's satisfying

( 1 ) does not seem to yield significantly stronger consistency results than the failure

at just one such k. In particular, Mitchell's results give much stronger consistency

than the consistency of a proper class of measurable cardinals.

Let us warn against trying to prove a result of the form "If there is a normal,

nonmetrizable Moore space then there is one of cardinality A" where X is, say, 2+ .

Start with a model M0 t= " k is strongly compact." By Solovay, M0 N " if p > k

satisfies (1), then u satisfies (2)." Now add k random reals to get Mx t= PMEA.

Choose a cardinal u which satisfies (1) and is greater than X of the conjecture. It is

well known that we can add a subset E of u+ satisfying (3) without adding a set of

ordinals of cardinality < p, to get a model M2 1= "no normal nonmetrizable Moore

space of cardinality X, and there is a normal nonmetrizable Moore space of

cardinality /x+ ."

4. Visualizing the space. In this section, we describe Heath's F-space, H, and

explain how the space of this paper (not yet defined) " looks like" the F-space. This

section is not strictly necessary. However, some readers may want a geometric

picture to go with the abstract definition of the space.

The point set of H consists of the x-axis and the upper half-plane. Points of the

upper half-plane are isolated. The «th basic open neighborhood, Bn(P), of a point,

P, on the x-axis consists of the two line segments from P to the line y = j¡ with

slopes of + 1 and -1 (i.e. a point with two arms—a "F"). It is routine to verify that

we have defined a space with a uniform base.

H is not normal because we cannot separate Q = {(x,0): x is rational} and

/ = {(x,0): x is irrational}. Suppose that U is an open set containing /. For « G co,

set An = [x E R: Bn(x,0) E U). By the Baire Category Theorem, there is an

interval (a, b) and an E w such that An is dense in (a, b). If x is a rational in (a, b),

then (x, 0) E U. Hence H is not normal.

The space we will define below will "look like" H. The set F will correspond to

the x-axis. The set of pairs, (p, t), of functions from « to co, will correspond to the

line y = },. We place "cubes" of functions indexed by (p, t) along the line y — ¿. A

basic open set, indexed by a, consists of a piece of F, together with two "arms". One

arm contains corners of some cubes indexed by (p, t) where a E p; the other arm

contains corners of some cubes where oÇt.

Corresponding to the use of the Baire Category Theorem is the lemma on stafull

sets. Roughly, it says that when F is covered by basic sets, for some n E co, there are

so many «th basic open sets that some have to be entwined, and hence intersect.

5. Construction of the space. Let F be the set of functions from co to E. For n E co,

set 2„ = {/| n: f E F] and set 2 = U„eu2„. For a E 2, set [a] = {/ E F: o C /}.

Then {[a]: a E 2} is a basis for a completely metrizable, strongly zero-dimensional

topology on F.

Let % he the family of subsets, Z, of 2 satisfying card Z < k and for some « G co,

Z C 2„. By (2), we can list 2" as {Za: a < k+ }. For a E 2, define a* to be the
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greatest ordinal in range a. For ß < k+ set 2^ = {a: a* < ß) and 2(¿8) = [Za:

a < /?}. By induction on n E co, we define, for a E 2„ and m E co, the sets A(a, m)

to satisfy

(4) card A(a, m) — Km    (card A(a, m) < w2 if k = co),

(5) LMo,iw)=Z(o*)n( IJ2*),

(6) if a C a' and m < m', then /l(a, w) C A(a', m').

Let g^. be the set of triples (g, p, t) which satisfy

(7) P,tG2Ac,

(8) for all/< ik- 1,    p(i) < r(i) < p(i + 1) < t(i + 1),

(9) g is a function from Z (p*) to {0,1}.

Set Q = UkeuQk. For a G 2„, define C(a) to be the set of triples (g, p, t) G Q

satisfying (we will use 2"l- for 2<'l»>*)

(10) either a C pora C t,

(11) for all/<n,    p(0), = t(0),,

(12) if Z G A(a,n) and Z C 2m, then g(Z C\ 2"1"') = 1 iff a | m G Z.

Set£(a) = [a] U G(a).

The point set of our space, X, is F U g. A basis for the topology on A is [B(a):

a G 2} U {{q}: q G Q}. That we have indeed defined a basis follows from (6). It is

easy to see that Ais Tx. If {[a | 1]} G A(a, n), where a G 2„, then B(a) is both open

and closed (use (11), (12), and (8)); hence X is regular. Finally, set

(13) g„= {B(a): a E 2„} U {{9}: 9 E ßt where* < n}.

For every infinite subset 9l of Un6uön, if x G D %, then % is a basis at x. Hence A

is a metacompact Moore space.

6. X is normal. Assume that H and K are disjoint closed subsets of X. First, we see

that we need to consider only the case where H U K E F. For if H D F E U and

K n F E V, where Í7and Vare disjoint open subsets of X, then (7 U (H n g) - A

and FU (ííl g) — H are disjoint, open, and contain H and A, respectively.

Second, define, for n G a, H„ = U {[a]: [a] n A = 0 and a G 2„} and define K„

similarly. By the "regular plus Lindelöf implies normal" argument, if we can

separate, for each « G co, both pairs Hn and F — Hn, Kn and F — Kn, then we can

separate H and K. We summarize these reductions in

Lemma 2. To show that X is normal, it suffices to separate, for each « G co and each

Z E 2„, the set Hz = U {[a]: a EZ) and Kz= F- H7.

Now let n, Z, Hz, and Kz he as in Lemma 2. Define

(14) C= (y G k+ : if ¿8 < y, then Z n 2^ = Za for some a < y}.
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C is closed and unbounded in k+ . For ¿8 G k+ , define y(ß) to be the least element

of C greater than ¿8. For a E 2„ + 3, definey'(a) > n + 3 to satisfy

(15) ify(a(«))<a(« + 2),thenZn 2o(w) EA(o,j(a)).

(16) 7(a) >«,(„(„+,»(a(0)).

Set Wa — U {/7(p): a Ç p G 2y(0)}. To separate 77z and Kz, it will suffice to show

that if a, v E 2„ + 3, a \ n G Z, and p | « G Z, then IF(a) D W(v) = 0. Aiming for a

contradiction, assume that (g, p, t) G IF(a) n IF(>>). By (10) either a Ç p or a Ç t.

Without loss of generality, assume a E p; then also v Et.

Case 1. y(v(n)) < a(n + 2). Then Z n 2"«"1 G A(a, j(a)) and Z n 2"(n) G

^(e, /(p)). Since a \ n E Z and v \ n G Z, we have by (12)

i =g(z n?<"» =o.

Case 2. a(n + 2) « y("("))• Then y(a(« + 1)) = y(v(n + 1)). By (8), a(0) ^ *(0),

so from (16) and Lemma 1, m = max{/(a), j(v)] satisfies p(0)m =£ r(0)m. Con-

tradiction to (11).

7. A is not metrizable. The following notion breaks the demonstration into several

short combinatorial arguments.

Definition. A subset, S, of 2„ is stafull if for all a G S and j < n, {r(j):

a \j C t G S] is stationary.

Lemma 3. (a) // U {[a]: a E T) — F, then for some n, T n 2„ has a stafull subset.

(h) Suppose that S C 2„ is stafull, and that h: S -> k+ satisfies for all a E S,

h(a) < a(0). Then there is a stafull S' E S such that h \ S' is constant.

(c) If S' E 2„ is stafull, then for each ¿8 G k+ , there is W = {aa: a < ¿8} C S' such

that

aa(i) < aa.(i')    iff i < /" or i = /" and a < a'.

Proof, (a) Assume that for all n E co, T n 2„ does not have a stafull subset. We

construct /£U{[a]:aGF}. By induction on / G co define f\i so that for each

n > / and 7" C T n 2„ there is i ET' such that either f\ i </. t or there is j,

i <j < n, such that {p(j): r\j E p E T'} is not stationary.

(b) By induction on i define a function h, so that h0 — h, domain hx = {o\n — i:

a E S} and for / > 0, if p G domain h,, then {a E domain h,_x: a D p and h,_x(a)

= h,(p)] is stationary. Set S' - (a G S: for all ; < n, h,(a \n - i) = hn(0)}.

(c) Define aa(i) by induction on (/, a) with the lexicographic order.

For each ô G E, set Ys = {/ G F: /(O) = Ô}. Since {Ys: 8 G E} is a discrete family

of closed sets, if X were metrizable, there would be a disjoint family {Us: 8 E E] of

open sets with Ys C Us. Aiming for a contradiction, assume that {Us: 8 G E) is such

a family.

Let T= {a G 2: 77(a) C i/o(0)}. By Lemma 3(a), for some n G co, F n 2„ con-

tains a stafull set, S. Apply Lemma 3(b) n times to get a stafull S' E S such that for

all a, a' E S' and i < n, a(0), = a'(0),. Next, apply Lemma 3(c) with ß = k to obtain

W — {oa: a < k}. For a G IF, enumerate^4(a, n) as {Z(a, ô): ô < k,,}.
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Let us take p, t G W (with p(0) < t(0)) and investigate whether there is a function

g from %(p*) to {0,1} such that (g, p, t)G 77(p) n 77(t). Conditions (7), (8), (9),

(10), and (11) are satisfied, so the assumption that {Ua: a E E) is disjoint means

that (12) fails. Thus, for each pair p,r E W, we have a pair ô, rj and « G co such that

(17) Z(p,o) = Z(T,T,)n2"l",

(18a) either p | m E Z(p, 8) and t| m G Z(t, tj),

(18b) or       p\m g Z(p,ô) andr|w G Z(t,tj).

Since k > (2"")+ , we can apply the Erdös-Rado theorem, k -» (3)2 to get p, a, t G IF

(with p(0) < a(0) < t(0)) and 8, tj < k„, for which each pair (p, a), (p, t), and (a, t)

satisfies (17) and the same alternative of (18). (In the case k = co, we use Ramsey's

theorem co -* (co)™.) It follows from (17) that

Z(a, tj) n 2plm = Z(p, 8) n 2pim = Z(t, tj) n 2plm = Z(a, 8) n 2pim.

Now applying (18) yields a\m E Z(a, tj) and o\m $ Z(a, tj). This contradiction

establishes that {Us: 8 E E] is not disjoint, and hence that X is not metrizable.

8. Normal, not collectionwise normal spaces. The problem of constructing a

normal, nonmetrizable Moore space is a special case of the problem of constructing

a normal, not collectionwise normal space. Bing solved the problem in this generality

when he introduced the notion of collectionwise normal [B, Example G]. This

example was modified to be perfect [B, Example H]; and metacompact [M]. These

spaces are far from being Moore spaces; their characters are at least 2s'. (The

character of a space is the least infinite cardinal, k, such that every point has a

neighborhood base of cardinality at most k. First countable is synonymous with

character co.)

The above construction apparently was considered very special until the mid 70's.

A general construction was suggested to the author by Przymusiñski's explanation

[Pr] of the space in [F2], We start with a space, F, which is normal and has an

uncountable discrete subset, Y. The simplest example is to let F he an uncountable

discrete space. Let G he the set of functions from ?F, the family of open subsets of F,

to (0,1}. The point set of the new space, X, is F U G. Points of G are isolated. Basic

open neighborhoods of points of F have the form B(U, a), where Î/6Î and a is a

finite subset of 9". B(U, a) = {x G F: x G U} U {g G G: for ail F G a, if U E V,

theng(F)= 1 and if U U F= 0, theng(F) = 0}.

Towards showing that X is normal, let H and K he disjoint closed subsets of X.

First we note that it suffices to consider the case where H and K are disjoint closed

subsets of F. Because F is normal, there are disjoint open sets, U, V where HEU

and K E V. Then B(U,{U]) and 77(F, {tV}) are disjoint open subsets of X con-

taining H and K, respectively.

We next use the uncountable discrete subset, Y, to show that X is not collection-

wise normal, {{y}: y G Y] is a discrete collection of closed subsets of X; assume

[y] E B(UV, ay). Now B(Uv,av) "has positive measure", hence the uncountable

collection is not disjoint. Of course, we can replace the informal measure argument

with a combinatorial argument using Ramsey's Theorem, co -» (co)™, or with the

A-system lemma.
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The space defined above is not Tx. There are several solutions to this problem.

Perhaps the simplest is to identify each x G F with the function gx G G, defined by

g(V) = 1 iff x G V. When F is an uncountable discrete space, this gives Bing's

Example G. Another way is to replace G with a sequence of copies of G; basic open

sets may exclude finitely many of these copies. Formally, X — F U (co X G); points

of X — F are isolated; and for x G F a basic open set is B(U, a, n) = (co — n) X

B(U, a). When F is an uncountable discrete space, this gives Bing's Example H.

Recall that our goal is to reduce the character. What is the character of the above

spaces? Basic open sets have the form B(U, a) where a is a finite subset of S".

Because of the uncountable discrete set Y, the cardinality of 3", and hence the

character of X, is at least 2s'.

The first successful attempt to reduce the character was George [F2]. From the

point of view of this section, F — {(a, ¿8) G 73(co,) X co,: a < ß} where D(ux) is co,

with the discrete topology and the second factor is co, with the usual, order,

topology. We replace G by a sequence (G ) <Wl of approximations to G. Let

Fy = {(a, ¿8) G F: ß < a); let Gy he the family of functions from the subspace

topology ST, on Fy to {0,1}. The point set of the space is F U U {Gy: y G co,}.

Points of U {Gy: y E co,} are isolated. A basic open neighborhood of (a, ß) G F has

the form B(U, a, ß), where U E^ß and a is a finite subset of ^. B(U, a, ¿8) = {g E

Gy:y<ß and for all F G A, if U E V then g(V n Fy) = 1 and if V n U = 0, then

g(V n F ) = 0}. The proofs of normality and not collectionwise normality are not

so trivial as in the first example, but still are straightforward. The point, of course, is

the reduced character. Each Fß is countable, hence | ^ | = 2S°, and finally the

character of the space is 28°.

The next important development is the space of Navy [Na], which crossed the

space, M, of [F3] with Bing's Example G. The space M is essentially the space

described in "Visualizing the space", with points (p, t) retained rather than replaced

by cubes. M is not normal; Navy's idea is to replace the point (p, t) by a copy of

Bing's Example G indexed by (p, t). Now, normality is built-in (see below);

paraLindelöfness follows quickly.

Another view of Navy's space is the one emphasized in this section. Let F he the

set of functions from co to co,. In the product topology, F is a nonseparable

metrizable space, a fortiori, F is normal and has an uncountable discrete subspace.

We replace G by copies of G indexed by entwined pairs. Formally X = F U

{(g, p, t): g E G and for some « G co, p(0) < t(0) < p(l) < • • • < p(n - 1) <

t(h — 1)}. Points of the form (g, p, t) are isolated. Basic open neighborhoods of

points x G F have the form 77(a, a) where [a] is a basic open subset of F, and a is a

finite set of arbitrary open subsets of F.

To demonstrate normality, it suffices to consider the case where the disjoint closed

sets, H, K, are subsets of F. Since F is normal there are disjoint open subsets

U, V, of F satisfying HEU and K E V. Then U {B(a,{U}): [a] E U} and

U {B(a,{U}): [a] E V) are disjoint open sets separating H and K in X. That X is

not collectionwise normal is as in §7; we can use the simpler notion full rather than

stafull (replace stationary with uncountable in the definition of stafull).
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As defined above, the space has character 2N|. Reducing the character to 2*° is

easy; we restrict a parameter a to range over finite subsets of countable unions of

basic open subsets of F. In the proof of normality, we cannot use U in a, but for

each a, there is a "countable approximation" to U (depending on a) which works

because of the entwining.

The penultimate step in the development of the space presented in this paper was

to assume CH and enumerate the countable unions of basic open subsets of F. The

final step, of course, was to replace CH with HYP.
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