Circle actions and fundamental groups for homology $4$-spheres
HTML articles powered by AMS MathViewer
- by Steven Plotnick
- Trans. Amer. Math. Soc. 273 (1982), 393-404
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664051-8
- PDF | Request permission
Abstract:
We generalize work of Fintushel and Pao to give a topological classification of smooth circle actions on oriented $4$-manifolds $\Sigma$ satisfying ${H_1}(\Sigma ) = 0$. We then use these ideas to construct infinite families of homology $4$-spheres that do not admit effective circle actions, and whose fundamental groups cannot be $3$-manifold groups.References
- Ronald Fintushel, Locally smooth circle actions on homotopy $4$-spheres, Duke Math. J. 43 (1976), no. 1, 63–70. MR 394716
- Ronald Fintushel, Circle actions on simply connected $4$-manifolds, Trans. Amer. Math. Soc. 230 (1977), 147–171. MR 458456, DOI 10.1090/S0002-9947-1977-0458456-6
- Ronald Fintushel, Classification of circle actions on $4$-manifolds, Trans. Amer. Math. Soc. 242 (1978), 377–390. MR 496815, DOI 10.1090/S0002-9947-1978-0496815-7
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- Michel A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67–72. MR 253347, DOI 10.1090/S0002-9947-1969-0253347-3
- Wilhelm Magnus, Noneuclidean tesselations and their groups, Pure and Applied Mathematics, Vol. 61, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0352287
- Louise Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745. MR 383406
- Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, $\mu$-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163–196. MR 518415
- Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001
- Peter Orlik and Frank Raymond, Actions of $\textrm {SO}(2)$ on 3-manifolds, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 297–318. MR 0263112
- Peter Sie Pao, Nonlinear circle actions on the $4$-sphere and twisting spun knots, Topology 17 (1978), no. 3, 291–296. MR 508892, DOI 10.1016/0040-9383(78)90033-2 S. Plotnick, Knots, automorphisms, and homology $4$-spheres, Thesis, Univ. of Michigan, 1979. —, Fibered knots in ${S^4}$-twist spinning, rolling, and other operations (in preparation).
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 393-404
- MSC: Primary 57S15; Secondary 57M99
- DOI: https://doi.org/10.1090/S0002-9947-1982-0664051-8
- MathSciNet review: 664051