Free products of topological groups with central amalgamation. II
HTML articles powered by AMS MathViewer
- by M. S. Khan and Sidney A. Morris
- Trans. Amer. Math. Soc. 273 (1982), 417-432
- DOI: https://doi.org/10.1090/S0002-9947-1982-0667154-7
- PDF | Request permission
Abstract:
In Free products of topological groups with central amalgamation. I, we introduced the notion of amalgamated free product of topological groups and showed that if $A$ is a common central closed subgroup of Hausdorff topological groups $G$ and $H$, then the amalgamated free product $G{\coprod _A}H$ exists and is Hausdorff. In this paper, we give an alternative much shorter (but less informative) proof of this result. We then proceed to describe the properties of $G{\coprod _A}H$. In particular, we find necessary and sufficient conditions for $G{\coprod _A}H$ to be a locally compact Hausdorff group, a complete metric group, and a maximally almost periodic group. Properties such as being a Baire space and connectedness are also investigated. In the case that $G$, $H$ and $A$ are ${k_\omega }$-groups, the topology of $G{\coprod _A}H$ is fully described. A consequence of this description is that for ${k_\omega }$-groups $G{\coprod _A}H$ is homeomorphic to $(G{ \times _A}H) \times F(G/A\Lambda H/A)$, where $G{ \times _A}H$ is the direct product of $G$ and $H$ with $A$ amalgamated, and $F(G/A\Lambda H/A)$ is the free topological group on the smash product of $G/A$ and $H/A$.References
- Roger Alperin, Locally compact groups acting on trees, Pacific J. Math. 100 (1982), no. 1, 23–32. MR 661438
- Ronald Brown, Elements of modern topology, McGraw-Hill Book Co., New York-Toronto-London, 1968. MR 0227979
- Stanley P. Franklin and Barbara V. Smith Thomas, A survey of $k_{\omega }$-spaces, Topology Proc. 2 (1977), no. 1, 111–124 (1978). MR 540599 M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324 (Russian); English transl., Amer. Math. Soc. Transl. 35 (1951). Reprinted in Amer. Math. Soc. Transl. (1) 8 (1962), 305-364.
- M. I. Graev, On free products of topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 343–354 (Russian). MR 0036768
- A. Hulanicki, Isomorphic embeddings of free products of compact groups, Colloq. Math. 16 (1967), 235–241. MR 209402, DOI 10.4064/cm-16-1-235-241
- Irving Kaplansky, Lie algebras and locally compact groups, University of Chicago Press, Chicago, Ill.-London, 1971. MR 0276398
- M. S. Khan and Sidney A. Morris, Amalgamated direct products of topological groups, Math. Chronicle 11 (1982), no. 1-2, 49–65. MR 677451
- M. S. Khan and Sidney A. Morris, Free products of topological groups with central amalgamation. I, Trans. Amer. Math. Soc. 273 (1982), no. 2, 405–416. MR 667153, DOI 10.1090/S0002-9947-1982-0667153-5
- John Mack, Sidney A. Morris, and Edward T. Ordman, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40 (1973), 303–308. MR 320216, DOI 10.1090/S0002-9939-1973-0320216-6 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- A. A. Markov, Three papers on topological groups: I. On the existence of periodic connected topological groups. II. On free topological groups. III. On unconditionally closed sets, Amer. Math. Soc. Translation 1950 (1950), no. 30, 120. MR 0037854
- Sidney A. Morris, Free products of topological groups, Bull. Austral. Math. Soc. 4 (1971), 17–29. MR 274647, DOI 10.1017/S0004972700046219
- Sidney A. Morris, Varieties of topological groups and left adjoint functors, J. Austral. Math. Soc. 16 (1973), 220–227. Collection of articles dedicated to the memory of Hanna Neumann, II. MR 0333059
- Sidney A. Morris, Local compactness and local invariance of free products of topological groups, Colloq. Math. 35 (1976), no. 1, 21–27. MR 486275, DOI 10.4064/cm-35-1-21-27
- Sidney A. Morris, Pontryagin duality and the structure of locally compact abelian groups, London Mathematical Society Lecture Note Series, No. 29, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0442141
- Sidney A. Morris and Peter Nickolas, Locally compact group topologies on an algebraic free product of groups, J. Algebra 38 (1976), no. 2, 393–397. MR 399341, DOI 10.1016/0021-8693(76)90229-5
- Sidney A. Morris, Edward T. Ordman, and H. B. Thompson, The topology of free products of topological groups, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 504–515. MR 0360912
- B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. MR 62741, DOI 10.1098/rsta.1954.0007
- Edward T. Ordman, Free $k$-groups and free topological groups, General Topology and Appl. 5 (1975), no. 3, 205–219. MR 427525
- Edward T. Ordman and Sidney A. Morris, Almost locally invariant topological groups, J. London Math. Soc. (2) 9 (1974/75), 30–34. MR 364528, DOI 10.1112/jlms/s2-9.1.30
- Barbara V. Smith Thomas, Categories of topological groups, Quaestiones Math. 2 (1977/78), no. 1-3, 355–377. MR 473081
- H. B. Thompson, A remark on free topological groups with no small subgroups, J. Austral. Math. Soc. 18 (1974), 482–484. MR 0376941
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 417-432
- MSC: Primary 22A05; Secondary 20E06, 54D50
- DOI: https://doi.org/10.1090/S0002-9947-1982-0667154-7
- MathSciNet review: 667154