Irreducible representations of with a
-dimensional weight space
Authors:
D. J. Britten and F. W. Lemire
Journal:
Trans. Amer. Math. Soc. 273 (1982), 509-540
MSC:
Primary 17B10
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667158-4
MathSciNet review:
667158
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we classify all irreducible linear representations of the simple Lie algebra which admit a one-dimensional weight space with respect to some Cartan subalgebra
of
. We first show that the problem is equivalent to determining all algebra homomorphisms from the centralizer of the Cartan subalgebra
in the universal enveloping algebra of
to the base field. We construct all such algebra homomorphisms and provide conditions under which two such algebra homomorphisms provide inequivalent irreducible representations of
.
- [1] Didier Arnal and Georges Pinczon, Sur certaines représentations de l’algèbre de Lie 𝑆𝐿(2), C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1369–A1372 (French). MR 277577
- [2] G. Benkart, private communication.
- [3] Richard E. Block, Classification of the irreducible representations of 𝔰𝔩(2,ℭ), Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 1, 247–250. MR 513751, https://doi.org/10.1090/S0273-0979-1979-14573-7
- [4] I. Z. Bouwer, Standard representations of simple Lie algebras, Canadian J. Math. 20 (1968), 344–361. MR 224746, https://doi.org/10.4153/CJM-1968-031-5
- [5] Jacques Dixmier, Algèbres enveloppantes, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). Cahiers Scientifiques, Fasc. XXXVII. MR 0498737
- [6] E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111-243.
- [7] I. Gel'fand and M. Graev, Finite dimensional irreducible representations of the unitary and full linear groups and related special functions, Amer. Math. Soc. Transl. 64 (1967), 116-146.
- [8] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
- [9] F. W. Lemire, Irreducible representations of a simple Lie algebra admitting a one-dimensional weight space, Proc. Amer. Math. Soc. 19 (1968), 1161–1164. MR 231872, https://doi.org/10.1090/S0002-9939-1968-0231872-3
- [10] F. W. Lemire, Note on weight spaces of irreducible linear representations, Canad. Math. Bull. 11 (1968), 399–403. MR 235073, https://doi.org/10.4153/CMB-1968-045-2
- [11] F. W. Lemire, Weight spaces and irreducible representations of simple Lie algebras, Proc. Amer. Math. Soc. 22 (1969), 192–197. MR 243001, https://doi.org/10.1090/S0002-9939-1969-0243001-1
- [12] F. W. Lemire, One-dimensional representations of the cycle subalgebra of a semi-simple Lie algebra, Canad. Math. Bull. 13 (1970), 463–467. MR 281765, https://doi.org/10.4153/CMB-1970-085-9
- [13]
-, An irreducible representation of
, Canad. Math. Bull. 17 (1974), 63-66.
- [14] F. W. Lemire, A new family of irreducible representations of 𝐴_{𝑛}., Canad. Math. Bull. 18 (1975), no. 4, 543–546. MR 422365, https://doi.org/10.4153/CMB-1975-098-4
- [15] F. Lemire and M. Pap, 𝐻-finite irreducible representations of simple Lie algebras, Canadian J. Math. 31 (1979), no. 5, 1084–1106. MR 546961, https://doi.org/10.4153/CJM-1979-100-5
- [16] Adolf van den Hombergh, Sur des suites de racines dont la somme des termes est nulle, Bull. Soc. Math. France 102 (1974), 353–364 (French). MR 366998
Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B10
Retrieve articles in all journals with MSC: 17B10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667158-4
Keywords:
Irreducible representations,
weight space decomposition,
Harish-Chandra homomorphism
Article copyright:
© Copyright 1982
American Mathematical Society