A general principle for limit theorems in finitely additive probability
Author:
Rajeeva L. Karandikar
Journal:
Trans. Amer. Math. Soc. 273 (1982), 541-550
MSC:
Primary 60F05; Secondary 60G07
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667159-6
MathSciNet review:
667159
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we formulate and prove a general principle which enables us to deduce limit theorems for sequences of independent random variables in a finitely additive setting from their analogues in the conventional countably additive setting.
- [1] D. J. Aldous, Limit theorems for subsequences of arbitrarily-dependent sequences of random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 (1977), no. 1, 59–82. MR 455090, https://doi.org/10.1007/BF00535707
- [2] Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- [3] Leo Breiman, Probability, Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, Ont., 1968. MR 0229267
- [4] Robert Chen, A finitely additive version of Kolmogorov’s law of the iterated logarithm, Israel J. Math. 23 (1976), no. 3-4, 209–220. MR 407947, https://doi.org/10.1007/BF02761801
- [5] Robert Chen, On almost sure convergence in a finitely additive setting, Z. Wahrsch. Verw. Gebiete 37 (1976/77), no. 4, 341–356. MR 571674, https://doi.org/10.1007/BF00533425
- [6] Lester E. Dubins, On Lebesgue-like extensions of finitely additive measures, Ann. Probability 2 (1974), 456–463. MR 357724, https://doi.org/10.1214/aop/1176996660
- [7] Lester E. Dubins and Leonard J. Savage, How to gamble if you must. Inequalities for stochastic processes, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965. MR 0236983
- [8] Michel Loève, Probability theory, Third edition, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- [9] Jacques Neveu, Mathematical foundations of the calculus of probability, Translated by Amiel Feinstein, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1965. MR 0198505
- [10] Roger A. Purves and William D. Sudderth, Some finitely additive probability, Ann. Probability 4 (1976), no. 2, 259–276. MR 402888, https://doi.org/10.1214/aop/1176996133
- [11] S. Ramakrishnan, Central limit theorems in a finitely additive setting, Illinois J. Math. 28 (1984), no. 1, 139–161. MR 730717
- [12] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211–226 (1964). MR 175194, https://doi.org/10.1007/BF00534910
Retrieve articles in Transactions of the American Mathematical Society with MSC: 60F05, 60G07
Retrieve articles in all journals with MSC: 60F05, 60G07
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667159-6
Keywords:
Finitely additive probability,
strategy,
invariance principles
Article copyright:
© Copyright 1982
American Mathematical Society