Weak $P$-points in ฤech-Stone compactifications
HTML articles powered by AMS MathViewer
- by Jan van Mill
- Trans. Amer. Math. Soc. 273 (1982), 657-678
- DOI: https://doi.org/10.1090/S0002-9947-1982-0667166-3
- PDF | Request permission
Abstract:
Let $X$ be a nonpseudocompact space which is either nowhere ccc or nowhere of weight $\leqslant {2^\omega }$. Then $\beta X - X$ contains a point $x$ which is a weak $P$-point of $\beta X$, i.e. if $F \subset \beta X - \{ x\}$ is countable, then $x \notin \bar F$. In addition, under MA, if $X$ is any nonpseudocompact space, then $\beta X - X$ contains a point $x$ such that whenever $F \subset \beta X - \{ x\}$ is countable and nowhere dense, then $x \notin \bar F$.References
- Murray G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proc. 5 (1980), 11โ25 (1981). MR 624458
- Soo Bong Chae and Jeffrey H. Smith, Remote points and $G$-spaces, Topology Appl. 11 (1980), no.ย 3, 243โ246. MR 585269, DOI 10.1016/0166-8641(80)90023-1
- W. W. Comfort, Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977), no.ย 4, 417โ455. MR 454893, DOI 10.1090/S0002-9904-1977-14316-4
- Eric K. van Douwen, Why certain ฤech-Stone remainders are not homogeneous, Colloq. Math. 41 (1979), no.ย 1, 45โ52. MR 550626, DOI 10.4064/cm-41-1-45-52
- Eric K. van Douwen, Homogeneity of $\beta G$ if $G$ is a topological group, Colloq. Math. 41 (1979), no.ย 2, 193โ199. MR 591923, DOI 10.4064/cm-41-2-193-199 โ, Remote points, Dissertationes Math. (to appear).
- Eric K. van Douwen and Jan van Mill, Spaces without remote points, Pacific J. Math. 105 (1983), no.ย 1, 69โ75. MR 688408 โ, (in preparation).
- Eric K. van Douwen and Jan van Mill, $\beta \omega -\omega$ is not first order homogeneous, Proc. Amer. Math. Soc. 81 (1981), no.ย 3, 503โ504. MR 597672, DOI 10.1090/S0002-9939-1981-0597672-6
- Alan Dow, Weak $P$-points in compact CCC $F$-spaces, Trans. Amer. Math. Soc. 269 (1982), no.ย 2, 557โ565. MR 637709, DOI 10.1090/S0002-9947-1982-0637709-4
- Alan Dow and Jan van Mill, On nowhere dense ccc $P$-sets, Proc. Amer. Math. Soc. 80 (1980), no.ย 4, 697โ700. MR 587958, DOI 10.1090/S0002-9939-1980-0587958-2
- Zdenฤk Frolรญk, Non-homogeneity of $\beta P-P$, Comment. Math. Univ. Carolinae 8 (1967), 705โ709. MR 266160
- Leonard Gillman and Melvin Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366โ391. MR 78980, DOI 10.1090/S0002-9947-1956-0078980-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199 I. Juhรกsz, Cardinal functions in topology, Math. Centre Tracts No 34, Amsterdam, 1975.
- Kenneth Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299โ306. MR 314619, DOI 10.1090/S0002-9947-1972-0314619-7 โ, Weak $P$-points in ${N^ \ast }$, Colloq. Math. Soc. Jรกnos Bolyai, vol. 23, Topology (Budapest, 1978), pp. 741-749.
- Jan van Mill, Weak $P$-points in compact $F$-spaces, Topology Proc. 4 (1979), no.ย 2, 609โ628 (1980). MR 598298
- Jan van Mill, Sixteen topological types in $\beta \omega -\omega$, Topology Appl. 13 (1982), no.ย 1, 43โ57. MR 637426, DOI 10.1016/0166-8641(82)90006-2
- Jan van Mill, A remark on the Rudin-Keisler order of ultrafilters, Houston J. Math. 9 (1983), no.ย 1, 125โ129. MR 699055
- Jan van Mill and Charles F. Mills, A topological property enjoyed by near points but not by large points, Topology Appl. 11 (1980), no.ย 2, 199โ209. MR 572374, DOI 10.1016/0166-8641(80)90008-5 C. F. Mills, An easier proof of the Shelah $P$-points independence theorem, Trans. Amer. Math. Soc. (to appear).
- Stelios Negrepontis, Absolute Baire sets, Proc. Amer. Math. Soc. 18 (1967), 691โ694. MR 214031, DOI 10.1090/S0002-9939-1967-0214031-9
- Edward L. Wimmers, The Shelah $P$-point independence theorem, Israel J. Math. 43 (1982), no.ย 1, 28โ48. MR 728877, DOI 10.1007/BF02761683
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 657-678
- MSC: Primary 54D35; Secondary 54D40
- DOI: https://doi.org/10.1090/S0002-9947-1982-0667166-3
- MathSciNet review: 667166