The Fourier expansion of Eisenstein series for $\textrm {GL}(3, \textbf {Z})$
HTML articles powered by AMS MathViewer
- by K. Imai and A. Terras
- Trans. Amer. Math. Soc. 273 (1982), 679-694
- DOI: https://doi.org/10.1090/S0002-9947-1982-0667167-5
- PDF | Request permission
Abstract:
The Fourier expansions of Eisenstein series for ${\text {GL}}(3,{\mathbf {Z}})$ are obtained by two methods—one analogous to the classical method used by many number theorists, including Weber, in his derivation of the Kronecker limit formula. The other method is analogous to that used by Siegel to obtain Fourier expansions of Eisenstein series for the Siegel modular group. The expansions involve matrix argument $K$-Bessel functions recently studied by Tom Bengtson. These $K$-Bessel functions are natural generalizations of the ordinary $K$-Bessel function which arise when considering harmonic analysis on the symmetric space of the general linear group using a certain system of coordinates.References
- W. L. Baily, Introductory lectures on automorphic forms, Princeton Univ. Press, Princeton, N. J., 1973.
- P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373. MR 179141, DOI 10.4064/aa-9-4-365-373 T. Bengtson, Matrix $K$-Bessel functions, Ph. D. thesis, University of California, San Diego, 1981.
- Atle Selberg and S. Chowla, On Epstein’s zeta-function, J. Reine Angew. Math. 227 (1967), 86–110. MR 215797, DOI 10.1515/crll.1967.227.86
- Charles W. Curtis, Representations of finite groups of Lie type, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 5, 721–757. MR 537625, DOI 10.1090/S0273-0979-1979-14648-2
- G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1940. MR 0004860
- D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310 (1979), 111–130. MR 546667
- Kaori Imai, Generalization of Hecke’s correspondence to Siegel modular forms, Amer. J. Math. 102 (1980), no. 5, 903–936. MR 590639, DOI 10.2307/2374197
- Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika, Automorphic forms on $\textrm {GL}(3)$. I, Ann. of Math. (2) 109 (1979), no. 1, 169–212. MR 519356, DOI 10.2307/1971270
- Tomio Kubota, Elementary theory of Eisenstein series, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. MR 0429749
- Tomio Kubota, Some results concerning reciprocity law and real analytic automorphic functions, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 382–395. MR 0340221
- R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 235–252. MR 0249539
- Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 31519, DOI 10.1007/BF01329622 —, Siegel’s modular forms and Dirichlet series, Lecture Notes in Math., vol. 216, Springer-Verlag, New York, 1971.
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Carl Ludwig Siegel, Einführung in die Theorie der Modulfunktionen $n$-ten Grades, Math. Ann. 116 (1939), 617–657 (German). MR 1251, DOI 10.1007/BF01597381
- H. M. Stark, On the problem of unique factorization in complex quadratic fields. , Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967) Amer. Math. Soc., Providence, R.I., 1967, pp. 41–56. MR 0252350 A. Terras, Fourier analysis on symmetric spaces and applications, lecture notes. —, Applications of special functions for the general linear group to number theory, Sém. Delange-Pisot-Poitou, 1976/77, no. 23.
- Audrey A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477–486. MR 323735, DOI 10.1090/S0002-9947-1973-0323735-6
- A. Terras, Fourier coefficients of Eisenstein series of one complex variable for the special linear group, Trans. Amer. Math. Soc. 205 (1975), 97–114. MR 369267, DOI 10.1090/S0002-9947-1975-0369267-2 —, Noneuclidean harmonic analysis, SIAM Rev. 24 (1982).
- Audrey Terras, Analysis on positive matrices as it might have occurred to Fourier, Analytic number theory (Philadelphia, Pa., 1980) Lecture Notes in Math., vol. 899, Springer, Berlin-New York, 1981, pp. 442–478. MR 654544
- Audrey Terras, On automorphic forms for the general linear group, Rocky Mountain J. Math. 12 (1982), no. 1, 123–143. MR 649746, DOI 10.1216/RMJ-1982-12-1-123 W. Weber, Lehrbuch der Algebra. III, 3rd ed., Chelsea, New York, 1961.
- André Weil, Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 88, Springer-Verlag, Berlin-New York, 1976. MR 0562289
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 273 (1982), 679-694
- MSC: Primary 10D20; Secondary 10C15, 22E45
- DOI: https://doi.org/10.1090/S0002-9947-1982-0667167-5
- MathSciNet review: 667167