Extending free cyclic actions on spheres
Author:
John Ewing
Journal:
Trans. Amer. Math. Soc. 273 (1982), 695-703
MSC:
Primary 57S17; Secondary 57Q10, 57S25
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667168-7
MathSciNet review:
667168
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Connolly and Geist have reduced the problem of determining which free cyclic actions on spheres extend to free actions of specified supergroups to a problem involving a certain transfer map. In this note we develop some algebraic tools for calculating the transfer and show that some cyclic actions do not extend to certain supergroups.
- [1] Frank Connolly and Robert Geist, On extending free group actions on spheres and a conjecture of Iwasawa, Trans. Amer. Math. Soc. 274 (1982), no. 2, 631–640. MR 675071, https://doi.org/10.1090/S0002-9947-1982-0675071-1
- [2] Kenkichi Iwasawa, On the theory of cyclotomic fields, Ann. of Math. (2) 70 (1959), 530–561. MR 124320, https://doi.org/10.2307/1970328
- [3] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, https://doi.org/10.1090/S0002-9904-1966-11484-2
- [4] Jean-Pierre Serre, Corps locaux, Hermann, Paris, 1968 (French). Deuxième édition; Publications de l’Université de Nancago, No. VIII. MR 0354618
- [5] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. MR 0431216
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S17, 57Q10, 57S25
Retrieve articles in all journals with MSC: 57S17, 57Q10, 57S25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667168-7
Keywords:
Transfer,
Reidemeister torsion,
group ring
Article copyright:
© Copyright 1982
American Mathematical Society