preserving operators on
spaces
Author:
John Wolfe
Journal:
Trans. Amer. Math. Soc. 273 (1982), 705-719
MSC:
Primary 46E15; Secondary 46B25
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667169-9
MathSciNet review:
667169
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a bounded linear operator where
is a compact Hausdorff space and
is a separable Banach space. Sufficient conditions are given for
to be an isomorphism (into) when restricted to a subspace
of
, such that
is isometrically isomorphic to a space
of continuous functions on the space of ordinal numbers less than or equal to the countable ordinal
.
- [1] Dale E. Alspach, Quotients of 𝐶[0,1] with separable dual, Israel J. Math. 29 (1978), no. 4, 361–384. MR 491925, https://doi.org/10.1007/BF02761174
- [2]
-,
norming subsets of
, Studia Math. (to appear).
- [3]
D. E. Alspach and Y. Benyamini,
quotients of separable
spaces, Israel J. Math. (to appear).
- [4] John Warren Baker, Compact spaces homeomorphic to a ray of ordinals, Fund. Math. 76 (1972), no. 1, 19–27. MR 307197, https://doi.org/10.4064/fm-76-1-19-27
- [5] Y. Benyamini, An extension theorem for separable Banach spaces, Israel J. Math. 29 (1978), no. 1, 24–30. MR 482075, https://doi.org/10.1007/BF02760399
- [6] C. Bessaga and A. Pełczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions, Studia Math. 19 (1960), 53–62. MR 113132, https://doi.org/10.4064/sm-19-1-53-62
- [7] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- [8] Felix Hausdorff, Set theory, Second edition. Translated from the German by John R. Aumann et al, Chelsea Publishing Co., New York, 1962. MR 0141601
- [9] K. Kuratowski, Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. MR 0259835
- [10] S. Mazurbiewicz and W. Sierpinski, Contributions à la topologie des ensembles dinombrables, Fund. Math. 1 (1920), 17-27.
- [11] A. Pełczyński, On 𝐶(𝑆)-subspaces of separable Banach spaces, Studia Math. 31 (1968), 513–522. MR 234261, https://doi.org/10.4064/sm-31-5-513-522
- [12] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58 (1968), 92. MR 0227751
- [13] Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. MR 270122, https://doi.org/10.4064/sm-37-1-13-36
- [14] Haskell P. Rosenthal, On factors of 𝐶([0,1]) with non-separable dual, Israel J. Math. 13 (1972), 361–378 (1973); correction, ibid. 21 (1975), no. 1, 93–94. MR 388063, https://doi.org/10.1007/BF02762811
- [15] Wacław Sierpiński, Cardinal and ordinal numbers, Second revised edition. Monografie Matematyczne, Vol. 34, Państowe Wydawnictwo Naukowe, Warsaw, 1965. MR 0194339
- [16] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61. MR 227743, https://doi.org/10.4064/sm-30-1-53-61
- [17] D. Alspach and Y. Benyamini, Primariness of spaces of continuous functions on ordinals, Israel J. Math. 27 (1977), no. 1, 64–92. MR 440349, https://doi.org/10.1007/BF02761606
- [18] Pierre Billard, Sur la primarité des espaces 𝐶(𝛼), Studia Math. 62 (1978), no. 2, 143–162 (French). MR 499961, https://doi.org/10.4064/sm-62-2-143-162
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E15, 46B25
Retrieve articles in all journals with MSC: 46E15, 46B25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667169-9
Article copyright:
© Copyright 1982
American Mathematical Society