$C^{\ast }$-algebras of multivariable Wiener-Hopf operators
HTML articles powered by AMS MathViewer
- by Paul S. Muhly and Jean N. Renault
- Trans. Amer. Math. Soc. 274 (1982), 1-44
- DOI: https://doi.org/10.1090/S0002-9947-1982-0670916-3
- PDF | Request permission
Abstract:
The ${C^ \ast }$-algebra $\mathfrak {W}$ generated by the Wiener-Hopf operators defined over a subsemigroup of a locally compact group is shown to be the image of a groupoid ${C^ \ast }$-algebra under a suitable representation. When the subsemigroup is either a polyhedral cone or a homogeneous, self-dual cone in an Euclidean space, this representation may be used to show that $\mathfrak {W}$ is postliminal and to find a composition series with very explicit subquotients. This yields a concrete parameterization of the spectrum of $\mathfrak {W}$ and exhibits the topology on it.References
- Erik M. Alfsen, Frederic W. Shultz, and Erling Størmer, A Gel′fand-Neumark theorem for Jordan algebras, Advances in Math. 28 (1978), no. 1, 11–56. MR 482210, DOI 10.1016/0001-8708(78)90044-0
- J. M. Ash (ed.), Studies in harmonic analysis, MAA Studies in Mathematics. Vol. 13, Mathematical Association of America, Washington, D.C., 1976. MR 0442565
- C. A. Berger and L. A. Coburn, Wiener-Hopf operators on $U_{2}$, Integral Equations Operator Theory 2 (1979), no. 2, 139–173. MR 543881, DOI 10.1007/BF01682732
- Charles A. Berger, Lewis A. Coburn, and Adam Korányi, Opérateurs de Wiener-Hopf sur les sphères de Lie, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 21, A989–A991 (French, with English summary). MR 584284
- A. Berman, Cones, matrices and mathematical programming, Lecture Notes in Economics and Mathematical Systems, Vol. 79, Springer-Verlag, Berlin-New York, 1973. MR 0363463
- Hel Braun and Max Koecher, Jordan-Algebren, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 128, Springer-Verlag, Berlin-New York, 1966 (German). MR 0204470
- L. A. Coburn, The $C^{\ast }$-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211–217. MR 236720, DOI 10.1090/S0002-9947-1969-0236720-9
- L. A. Coburn and R. G. Douglas, $C^{\ast }$-algebras of operators on a half-space. I, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 59–67. MR 358417
- L. A. Coburn, R. G. Douglas, D. G. Schaeffer, and I. M. Singer, $C^{\ast }$-algebras of operators on a half-space. II. Index theory, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 69–79. MR 358418
- J. Dixmier, Algèbres quasi-unitaires, Comment. Math. Helv. 26 (1952), 275–322 (French). MR 52697, DOI 10.1007/BF02564306 —, ${C^ \ast }$-algebras, North-Holland, Amsterdam and New York, 1977.
- R. G. Douglas, On the $C^{\ast }$-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), no. 3-4, 143–151. MR 394296, DOI 10.1007/BF02392163
- R. G. Douglas and Roger Howe, On the $C^*$-algebra of Toeplitz operators on the quarterplane, Trans. Amer. Math. Soc. 158 (1971), 203–217. MR 288591, DOI 10.1090/S0002-9947-1971-0288591-1
- Alexander Dynin, Inversion problem for singular integral operators: $C^{\ast }$-approach, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 10, 4668–4670. MR 507929, DOI 10.1073/pnas.75.10.4668
- Edward G. Effros and Frank Hahn, Locally compact transformation groups and $C^{\ast }$- algebras, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967. MR 0227310 K. Friedrichs, Pseudo-differential operators, Courant Institute of Mathematical Sciences, New York University, New York, 1970.
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- James Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885–911. MR 146297
- L. S. Gol′denšteĭn and I. C. Gohberg, On a multidimensional integral equation on a half-space whose kernel is a function of the difference of the arguments, and on a discrete analogue of this equation, Soviet Math. Dokl. 1 (1960), 173–176. MR 0117519
- I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, Vol. 41, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware. MR 0355675 A. Guichardet, Tensor products of ${C^ \ast }$-algebras. I, II, Aarhus Univ., 1969.
- P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (2) 35 (1934), no. 1, 29–64. MR 1503141, DOI 10.2307/1968117
- Victor Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79–107. MR 105651, DOI 10.1007/BF02559569 M. Koecher, Jordan algebras and their applications, mimeographed notes, University of Minnesota, 1962.
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266
- I. B. Simonenko, Convolution type operators in cones, Mat. Sb. (N.S.) 74 (116) (1967), 298–313 (Russian). MR 0222723
- Hiroshi Takai, On a duality for crossed products of $C^{\ast }$-algebras, J. Functional Analysis 19 (1975), 25–39. MR 0365160, DOI 10.1016/0022-1236(75)90004-x
- Masamichi Takesaki, Covariant representations of $C^{\ast }$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273–303. MR 225179, DOI 10.1007/BF02392085
- D. M. Topping, An isomorphism invariant for spin factors, J. Math. Mech. 15 (1966), 1055–1063. MR 0198271
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 274 (1982), 1-44
- MSC: Primary 46L05; Secondary 45E10, 47B35
- DOI: https://doi.org/10.1090/S0002-9947-1982-0670916-3
- MathSciNet review: 670916