Decisive subgroups of analytic groups
HTML articles powered by AMS MathViewer
- by T. Christine Stevens
- Trans. Amer. Math. Soc. 274 (1982), 101-108
- DOI: https://doi.org/10.1090/S0002-9947-1982-0670922-9
- PDF | Request permission
Abstract:
It is known that every analytic group $(L,\tau )$ contains a closed abelian subgroup $H$ which is "decisive" in the sense that the Hausdorff topologies for $L$ which are weaker than $\tau$ are completely determined by their restrictions to $H$. We show here that $H$ must ordinarily contain the entire center of $L$ but that the rest of $H$ can in general be reduced. The proof involves constructing "unusual" topologies for abelian Lie groups.References
- Andrew M. Gleason and Richard S. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957), 631β648. MR 89367, DOI 10.2307/2372567
- Morikuni Goto, Absolutely closed Lie groups, Math. Ann. 204 (1973), 337β341. MR 372118, DOI 10.1007/BF01354582
- Morikuni Goto, Immersions of Lie groups, J. Math. Soc. Japan 32 (1980), no.Β 4, 727β749. MR 589110, DOI 10.2969/jmsj/03240727
- F. B. Jones, Connected and disconnected plane sets and the functional equation $f(x)+f(y)=f(x+y)$, Bull. Amer. Math. Soc. 48 (1942), 115β120. MR 5906, DOI 10.1090/S0002-9904-1942-07615-4
- G. D. Mostow, On the fundamental group of a homogeneous space, Ann. of Math. (2) 66 (1957), 249β255. MR 88675, DOI 10.2307/1969997
- J. W. Nienhuys, Not locally compact monothetic groups. I, Nederl. Akad. Wetensch. Proc. Ser. A 73=Indag. Math. 32 (1970), 295β310. MR 0277654
- J. W. Nienhuys, Construction of group topologies on abelian groups, Fund. Math. 75 (1972), no.Β 2, 101β116. (errata insert). MR 302810, DOI 10.4064/fm-75-2-101-116
- T. Christine Stevens, Weakening the topology of a Lie group, Trans. Amer. Math. Soc. 276 (1983), no.Β 2, 541β549. MR 688961, DOI 10.1090/S0002-9947-1983-0688961-1
- David Zerling, Some theorems on $(\textrm {CA})$ analytic groups, Trans. Amer. Math. Soc. 205 (1975), 181β192. MR 364548, DOI 10.1090/S0002-9947-1975-0364548-0
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 274 (1982), 101-108
- MSC: Primary 22E15; Secondary 54A10
- DOI: https://doi.org/10.1090/S0002-9947-1982-0670922-9
- MathSciNet review: 670922