Clifford module invariants of spin bundles
Authors:
Jacques Allard and Anthony Bahri
Journal:
Trans. Amer. Math. Soc. 274 (1982), 193-202
MSC:
Primary 55R25; Secondary 15A66, 55R40, 57R15
DOI:
https://doi.org/10.1090/S0002-9947-1982-0670927-8
MathSciNet review:
670927
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we study -theory invariants of Spin bundles obtained by the
-construction from Clifford module representations of the Spinor group. We begin by describing their elementary properties including various Whitney sum formulae and their relation with the
-invariant for vector bundles over spheres. We next observe an important difference between the two half-Spin representations and then proceed to investigate the fiber homotopy properties of the invariants. We conclude with some applications.
- [1] J. F. Adams, On the groups 𝐽(𝑋). II, Topology 3 (1965), 137–171. MR 198468, https://doi.org/10.1016/0040-9383(65)90040-6
- [2] J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- [3] J. Allard, Contribution to the theory of stable trivial vector bundles, Ph.D. Thesis, University of British Columbia, 1977.
- [4] Jacques Allard, Sums of stably trivial vector bundles, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 1, 97–107. MR 549302, https://doi.org/10.1017/S0305004100056565
- [5] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3–38. MR 167985, https://doi.org/10.1016/0040-9383(64)90003-5
- [6] A. P. Bahri, Problems in algebraic topology, D.Phil. Thesis, Oxford, 1980.
- [7] A. J. Berrick, Consequences of the Kahn-Priddy theorem in homotopy and geometry, Mathematika 28 (1981), no. 1, 72–78. MR 632797, https://doi.org/10.1112/S0025579300015369
- [8] Raoul Bott, Lectures on 𝐾(𝑋), Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0258020
- [9] Dale Husemoller, Fibre bundles, 2nd ed., Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 20. MR 0370578
- [10] I. M. James, The topology of Stiefel manifolds, Cambridge University Press, Cambridge-New York-Melbourne, 1976. London Mathematical Society Lecture Note Series, No. 24. MR 0431239
- [11] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348. MR 516214, https://doi.org/10.1016/0040-9383(78)90002-2
- [12] Michel A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161–169. MR 0113237
- [13] Juno Mukai, An application of the Kahn-Priddy theorem, J. London Math. Soc. (2) 15 (1977), no. 1, 183–187. MR 436140, https://doi.org/10.1112/jlms/s2-15.1.183
- [14] François Sigrist and Ulrich Suter, Eine Anwendung der 𝐾-Theorie in der Theorie der 𝐻-Räume, Comment. Math. Helv. 47 (1972), 36–52 (German). MR 307230, https://doi.org/10.1007/BF02566787
Retrieve articles in Transactions of the American Mathematical Society with MSC: 55R25, 15A66, 55R40, 57R15
Retrieve articles in all journals with MSC: 55R25, 15A66, 55R40, 57R15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0670927-8
Article copyright:
© Copyright 1982
American Mathematical Society