Krull and global dimensions of semiprime Noetherian PI-rings
HTML articles powered by AMS MathViewer
- by Richard Resco, Lance W. Small and J. T. Stafford
- Trans. Amer. Math. Soc. 274 (1982), 285-295
- DOI: https://doi.org/10.1090/S0002-9947-1982-0670932-1
- PDF | Request permission
Abstract:
In this paper it is shown that if $R$ is a semiprime Noetherian PI-ring of finite global dimension, then the Krull dimension of $R$ is less than or equal to its global dimension. The proof depends upon two preliminary results on arbitrary Noetherian PI-rings, which are of independent interest: (i) any height two prime ideal of $R$ contains infinitely many height one prime ideals; (ii) the localization of the polynomial ring $R[x]$ at its set of monic elements is a Jacobson ring.References
- S. A. Amitsur and L. W. Small, Prime ideals in PI rings, J. Algebra 62 (1980), no. 2, 358–383. MR 563234, DOI 10.1016/0021-8693(80)90188-X
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- James W. Brewer and William J. Heinzer, $R$ Noetherian implies $R\langle X\rangle$ is a Hilbert ring, J. Algebra 67 (1980), no. 1, 204–209. MR 595028, DOI 10.1016/0021-8693(80)90317-8
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- K. L. Fields, Examples of orders over discrete valuation rings, Math. Z. 111 (1969), 126–130. MR 246913, DOI 10.1007/BF01111193
- K. L. Fields, On the global dimension of skew polynomial rings—An addendum, J. Algebra 14 (1970), 528–530. MR 265410, DOI 10.1016/0021-8693(70)90100-6
- K. R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974), 315–322. MR 382358, DOI 10.1090/S0002-9939-1974-0382358-X
- Robert Gordon and J. C. Robson, Krull dimension, Memoirs of the American Mathematical Society, No. 133, American Mathematical Society, Providence, R.I., 1973. MR 0352177 A. Häberlein, Globale Dimensionen von Ore-Erweiterungen, Zulassungsarbeit, Universität München, 1976.
- Arun Vinayak Jategaonkar, A counter-example in ring theory and homological algebra, J. Algebra 12 (1969), 418–440. MR 240131, DOI 10.1016/0021-8693(69)90040-4
- Arun Vinayak Jategaonkar, Skew polynomial rings over orders in Artinian rings, J. Algebra 21 (1972), 51–59. MR 299624, DOI 10.1016/0021-8693(72)90033-6
- S. Jøndrup, Homological dimensions of some P.I. rings, Comm. Algebra 8 (1980), no. 7, 685–696. MR 561548, DOI 10.1080/00927878008822483
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- T. Y. Lam, Serre’s conjecture, Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, Berlin-New York, 1978. MR 0485842
- L. R. le Riche, The ring $R\langle X\rangle$, J. Algebra 67 (1980), no. 2, 327–341. MR 602067, DOI 10.1016/0021-8693(80)90164-7
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- J. C. Robson, Idealizers and hereditary Noetherian prime rings, J. Algebra 22 (1972), 45–81. MR 299639, DOI 10.1016/0021-8693(72)90104-4
- J. C. Robson and Lance W. Small, Liberal extensions, Proc. London Math. Soc. (3) 42 (1981), no. 1, 87–103. MR 602124, DOI 10.1112/plms/s3-42.1.87 J.-E. Roos, The Weyl algebras are Gorenstein rings, 1972 (unpublished).
- Alex Rosenberg and J. T. Stafford, Global dimension of Ore extensions, Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976, pp. 181–188. MR 0409564
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- William Schelter, Non-commutative affine P.I. rings are catenary, J. Algebra 51 (1978), no. 1, 12–18. MR 485980, DOI 10.1016/0021-8693(78)90131-X
- Lance W. Small, A change of rings theorem, Proc. Amer. Math. Soc. 19 (1968), 662–666. MR 223412, DOI 10.1090/S0002-9939-1968-0223412-X
- Lance W. Small, Localization in $PI$-rings, J. Algebra 18 (1971), 269–270. MR 280545, DOI 10.1016/0021-8693(71)90060-3
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 274 (1982), 285-295
- MSC: Primary 16A33; Secondary 16A38
- DOI: https://doi.org/10.1090/S0002-9947-1982-0670932-1
- MathSciNet review: 670932