Hardy spaces and Jensen measures
HTML articles powered by AMS MathViewer
- by Takahiko Nakazi
- Trans. Amer. Math. Soc. 274 (1982), 375-378
- DOI: https://doi.org/10.1090/S0002-9947-1982-0670939-4
- PDF | Request permission
Abstract:
Suppose $A$ is a subalgebra of ${L^\infty }(m)$ on which $m$ is multiplicative. In this paper, we show that if $m$ is a Jensen measure and $A + \overline A$ is dense in ${L^2}(m)$, then $A + \overline A$ is weak-* dense in ${L^\infty }(m)$, that is, $A$ is a weak-* Dirichlet algebra. As a consequence of it, it follows that if $A + \overline A$ is dense in ${L^4}(m)$, then $A$ is a weak-* Dirichlet algebra. (It is known that even if $A + \overline A$ is dense in ${L^3}(m)$, $A$ is not a weak-* Dirichlet algebra.) As another consequence, it follows that if $B$ is a subalgebra of the classical Hardy space ${H^\infty }$ containing the constants and dense in ${H^2}$, then $B$ is weak-* dense in ${H^\infty }$.References
- Stephen D. Fisher, Algebras of bounded functions invariant under the restricted backward shift, J. Functional Analysis 12 (1973), 236–245. MR 0341099, DOI 10.1016/0022-1236(73)90077-3
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. W. Gamelin, Uniform algebras and Jensen measures, London Mathematical Society Lecture Note Series, vol. 32, Cambridge University Press, Cambridge-New York, 1978. MR 521440
- Kenneth Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271–317. MR 149330, DOI 10.1007/BF02545769
- Kenneth Hoffman and Hugo Rossi, Function theory and multiplicative linear functionals, Trans. Amer. Math. Soc. 116 (1965), 536–543. MR 188822, DOI 10.1090/S0002-9947-1965-0188822-X
- G. Lumer, Herglotz transformation and $H^{p}$ theory, Bull. Amer. Math. Soc. 71 (1965), 725–730. MR 181909, DOI 10.1090/S0002-9904-1965-11362-3
- Takahiko Nakazi, A note on weak-$\ast$ Dirichlet algebra, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 7-8, 553–555 (1980) (English, with Russian summary). MR 581550
- T. P. Srinivasan and Ju-kwei Wang, Weak ${}^{\ast }$-Dirichlet algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 216–249. MR 0198282
- Kôzô Yabuta, A note on extremum problems in abstract Hardy spaces, Arch. Math. (Basel) 23 (1972), 54–57. MR 310648, DOI 10.1007/BF01304842
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 274 (1982), 375-378
- MSC: Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9947-1982-0670939-4
- MathSciNet review: 670939