Multiplicative properties of power maps. II
HTML articles powered by AMS MathViewer
- by C. A. McGibbon
- Trans. Amer. Math. Soc. 274 (1982), 479-508
- DOI: https://doi.org/10.1090/S0002-9947-1982-0675065-6
- PDF | Request permission
Abstract:
The notions of $A_n$-maps and $C_n$-forms can be regarded as crude approximations to the concepts of homomorphisms and commutativity, respectively. These approximations are used to study power maps on connected Lie groups and their localizations. For such groups the power map $x \mapsto {x^n}$ is known to be an $A_2$-map if and only if $n$ is a solution to a certain quadratic congruence. In this paper, $A_3$-power maps are studied. For the Lie group Sp(l) it is shown that the $A_3$-powers coincide with solutions which are common to the quadratic congruence, mentioned earlier, and another cubic congruence. Other Lie groups, when localized so as to become homotopy commutative, are also shown to have infinitely many $A_3$-powers. The proofs reflect the combinatorial nature of the obstructions involved.References
- J. F. Adams, The sphere, considered as an $H$-space $\textrm {mod}\,p$, Quart. J. Math. Oxford Ser. (2) 12 (1961), 52–60. MR 123323, DOI 10.1093/qmath/12.1.52
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21–71. MR 198470, DOI 10.1016/0040-9383(66)90004-8
- M. Arkowitz and C. R. Curjel, On maps of $H$-spaces, Topology 6 (1967), 137–148. MR 230306, DOI 10.1016/0040-9383(67)90030-4
- Raoul Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249–256. MR 123330, DOI 10.1007/BF02565939
- S. Feder and S. Gitler, Mappings of quaternionic projective spaces, Bol. Soc. Mat. Mexicana (2) 18 (1973), 33–37. MR 336740
- Eric M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. of Math. (2) 101 (1975), 510–520. MR 391078, DOI 10.2307/1970938
- Martin Fuchs, Verallgemeinerte Homotopie-Homomorphismen und klassifizierende Räume, Math. Ann. 161 (1965), 197–230 (German). MR 195090, DOI 10.1007/BF01361971
- J. R. Hubbuck, On homotopy commutative $H$-spaces, Topology 8 (1969), 119–126. MR 238316, DOI 10.1016/0040-9383(69)90004-4
- J. R. Hubbuck, Homotopy homomorphisms of Lie groups, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp. 33–41. MR 0336746
- Daniel M. Kan, A relation between $\textrm {CW}$-complexes and free c.s.s. groups, Amer. J. Math. 81 (1959), 512–528. MR 111036, DOI 10.2307/2372755
- Arunas Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 978–981. MR 132543, DOI 10.1073/pnas.46.7.978
- C. A. McGibbon, Multiplicative properties of power maps. I, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 123, 341–350. MR 587096, DOI 10.1093/qmath/31.3.341 —, Generalized Samelson products in the unitary group, Notices Amer. Math. Soc. 26 (1979), Abstract 770-G9, A-588.
- John Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272–284. MR 77122, DOI 10.2307/1969609 J. C. Moore, Algèbres d’Eilenberg Maclane et homotopie, Séminaire H. Cartan, Paris, 1955.
- John C. Moore, Some applications of homology theory to homotopy problems, Ann. of Math. (2) 58 (1953), 325–350. MR 59549, DOI 10.2307/1969791
- Jean-Pierre Serre, Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258–294 (French). MR 59548, DOI 10.2307/1969789
- James Dillon Stasheff, Homotopy associativity of $H$-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 293–312. 108 (1963), 275-292; ibid. MR 0158400, DOI 10.1090/S0002-9947-1963-0158400-5
- James Stasheff, $H$-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, Berlin-New York, 1970. MR 0270372
- Masahiro Sugawara, On a condition that a space is an $H$-space, Math. J. Okayama Univ. 6 (1957), 109–129. MR 86303
- Masahiro Sugawara, On the homotopy-commutativity of groups and loop spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 257–269. MR 120645, DOI 10.1215/kjm/1250775911 D. Sullivan, Geometric topology. I: Localization, periodicity, and Galois symmetry, M.I.T. Notes (1970).
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- Francis D. Williams, Higher homotopy-commutativity, Trans. Amer. Math. Soc. 139 (1969), 191–206. MR 240818, DOI 10.1090/S0002-9947-1969-0240818-9
- Alexander Zabrodsky, Hopf spaces, North-Holland Mathematics Studies, Vol. 22, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1976. MR 0440542
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 274 (1982), 479-508
- MSC: Primary 55P45; Secondary 22E20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0675065-6
- MathSciNet review: 675065