On extending free group actions on spheres and a conjecture of Iwasawa
HTML articles powered by AMS MathViewer
- by Frank Connolly and Robert Geist
- Trans. Amer. Math. Soc. 274 (1982), 631-640
- DOI: https://doi.org/10.1090/S0002-9947-1982-0675071-1
- PDF | Request permission
Abstract:
A transfer map for Reidemeister torsion is defined and used to determine whether free actions of $\mathbf {Z}/k$ on $S^{2n+1}$, $n > 1$, extend to free actions of $\mathbf {Z}/hk$. It is shown that for $k$ odd, every free $\mathbf {Z}/k$ action on $S^{2n+1}$, $n > 1$, extends to a free $\mathbf {Z}/2k$ action. For prime $p$, extension of an arbitrary free $\mathbf {Z}/p$ action to a free $\mathbf {Z}/p^{2}$ action is reduced to a long-standing conjecture of Iwasawa.References
- William Browder, Ted Petrie, and C. T. C. Wall, The classification of free actions of cyclic groups of odd order on homotopy spheres, Bull. Amer. Math. Soc. 77 (1971), 455–459. MR 279826, DOI 10.1090/S0002-9904-1971-12736-2
- Kenkichi Iwasawa, On the theory of cyclotomic fields, Ann. of Math. (2) 70 (1959), 530–561. MR 124320, DOI 10.2307/1970328
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- Ted Petrie, The Atiyah-Singer invariant, the Wall groups $L_{n}(\pi ,\,1)$, and the function $(te^{x}+1)/(te^{x}-1)$, Ann. of Math. (2) 92 (1970), 174–187. MR 319216, DOI 10.2307/1970701 D. Sullivan, Triangulating homotopy equivalences, Thesis, Princeton Univ., Princeton, N. J., 1966.
- C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), no. 1, 1–80. MR 432737, DOI 10.2307/1971019
- C. T. C. Wall, Some $L$ groups of finite groups, Bull. Amer. Math. Soc. 79 (1973), 526–529. MR 335605, DOI 10.1090/S0002-9904-1973-13185-4
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- John Ewing, Extending free cyclic actions on spheres, Trans. Amer. Math. Soc. 273 (1982), no. 2, 695–703. MR 667168, DOI 10.1090/S0002-9947-1982-0667168-7
- Samuel S. Wagstaff Jr., The irregular primes to $125000$, Math. Comp. 32 (1978), no. 142, 583–591. MR 491465, DOI 10.1090/S0025-5718-1978-0491465-4
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 274 (1982), 631-640
- MSC: Primary 57S17; Secondary 57R67
- DOI: https://doi.org/10.1090/S0002-9947-1982-0675071-1
- MathSciNet review: 675071