Whitney levels in hyperspaces of certain Peano continua
HTML articles powered by AMS MathViewer
- by Jack T. Goodykoontz and Sam B. Nadler
- Trans. Amer. Math. Soc. 274 (1982), 671-694
- DOI: https://doi.org/10.1090/S0002-9947-1982-0675074-7
- PDF | Request permission
Abstract:
Let $X$ be a Peano continuum. Let ${2^x}$ (resp., $C(X)$) be the space of all nonempty compacta (resp., subcontinua) of $X$ with the Hausdorff matric. Let $\omega$ be a Whitney map defined on $\mathcal {H}={2^{X}}$ or $C(X)$ such that $\omega$ is admissible (this requires the existence of a certain type of deformation of $\mathcal {H}$). If $\mathcal {H}=C(X)$, assume $X$ contains no free arc. Then, for any ${t_0} \in (0,\omega (X))$, it is proved that ${\omega ^{ - 1}}({t_0}), {\omega ^{ - 1}}([0, {t_0}])$, and ${\omega ^{ - 1}}([{t_0}, \omega (X)])$ are Hilbert cubes. This is an analogue of the Curtis-Schori theorem for $\mathcal {H}$. A general result for the existance of admissible Whitney maps is proved which implies that these maps exist when $X$ is starshaped in a Banach space or when $X$ is a dendrite. Using these results it is shown, for example that being an AR, an ANR, an LC space, or an ${\text {L}}{{\text {C}}^n}$ space is not strongly Whitney-reversible.References
- R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101–1110. MR 35429, DOI 10.1090/S0002-9904-1949-09334-5
- Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
- C. E. Capel and W. L. Strother, Multi-valued functions and partial order, Portugal. Math. 17 (1958), 41–47. MR 101512
- J. H. Carruth, A note on partially ordered compacta, Pacific J. Math. 24 (1968), 229–231. MR 222852, DOI 10.2140/pjm.1968.24.229
- T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR 0423357, DOI 10.1090/cbms/028
- D. W. Curtis, Growth hyperspaces of Peano continua, Trans. Amer. Math. Soc. 238 (1978), 271–283. MR 482919, DOI 10.1090/S0002-9947-1978-0482919-1
- D. W. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), no. 1, 19–38. MR 512241, DOI 10.4064/fm-101-1-19-38
- D. W. Curtis and R. M. Schori, Hyperspaces which characterize simple homotopy type, General Topology and Appl. 6 (1976), no. 2, 153–165. MR 394684, DOI 10.1016/0016-660X(76)90029-5
- Carl Eberhart, Intervals of continua which are Hilbert cubes, Proc. Amer. Math. Soc. 68 (1978), no. 2, 220–224. MR 480197, DOI 10.1090/S0002-9939-1978-0480197-6
- Carl Eberhart and Sam B. Nadler Jr., Hyperspaces of cones and fans, Proc. Amer. Math. Soc. 77 (1979), no. 2, 279–288. MR 542098, DOI 10.1090/S0002-9939-1979-0542098-5
- C. Eberhart and S. B. Nadler Jr., The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 1027–1034. MR 303513
- J. B. Fugate, G. R. Gordh Jr., and Lewis Lum, Arc-smooth continua, Trans. Amer. Math. Soc. 265 (1981), no. 2, 545–561. MR 610965, DOI 10.1090/S0002-9947-1981-0610965-3
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- Ronald J. Knill, Cones, products and fixed points, Fund. Math. 60 (1967), 35–46. MR 211389, DOI 10.4064/fm-60-1-35-46
- R. J. Koch and I. S. Krule, Weak cutpoint ordering on hereditarily unicoherent continua, Proc. Amer. Math. Soc. 11 (1960), 679–681. MR 120606, DOI 10.1090/S0002-9939-1960-0120606-1
- J. Krasinkiewicz, Curves which are continuous images of tree-like continua are movable, Fund. Math. 89 (1975), no. 3, 233–260. MR 388358, DOI 10.4064/fm-89-3-233-260
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835 Stefan Mazurkeiwicz, Sur l’hyperspace d’un continu, Fund. Math. 18 (1932), 171-177.
- Edwin E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111–1121. MR 35430, DOI 10.1090/S0002-9904-1949-09336-9
- Sam B. Nadler Jr., A characterization of locally connected continua by hyperspace retractions, Proc. Amer. Math. Soc. 67 (1977), no. 1, 167–176. MR 458378, DOI 10.1090/S0002-9939-1977-0458378-6 —, Hyperspaces of sets, Pure and Appl. Math., vol. 49, Dekker, New York, 1978.
- Sam B. Nadler Jr., Some basic connectivity properties of Whitney map inverses in $C(X)$, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 393–410. MR 0358659
- Sam B. Nadler Jr., Whitney-reversible properties, Fund. Math. 109 (1980), no. 3, 235–248. MR 597070, DOI 10.4064/fm-109-3-235-248
- Ann Petrus, Contractibility of Whitney continua in $C(X)$, General Topology Appl. 9 (1978), no. 3, 275–288. MR 510909, DOI 10.1016/0016-660x(78)90031-4
- H. Toruńczyk, On $\textrm {CE}$-images of the Hilbert cube and characterization of $Q$-manifolds, Fund. Math. 106 (1980), no. 1, 31–40. MR 585543, DOI 10.4064/fm-106-1-31-40 L. E. Ward, Jr., Extending Whitney maps, preprint.
- James E. West, The subcontinua of a dendron form a Hilbert cube factor, Proc. Amer. Math. Soc. 36 (1972), 603–608. MR 312449, DOI 10.1090/S0002-9939-1972-0312449-9 Hassler Whitney, Regular families of curves. I, Proc. Nat. Acad. Sci. U.S.A. 18 (1932), 275-278.
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028 M. Wojdyslawski, Sur la contractilité des hyperspaces des continus localement connexes, Fund. Math. 30 (1938), 247-252.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 274 (1982), 671-694
- MSC: Primary 54B20; Secondary 54C99, 54F20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0675074-7
- MathSciNet review: 675074