Polynomials on affine manifolds
Author:
David Fried
Journal:
Trans. Amer. Math. Soc. 274 (1982), 709-719
MSC:
Primary 53C15; Secondary 57R99, 58C05
DOI:
https://doi.org/10.1090/S0002-9947-1982-0675076-0
MathSciNet review:
675076
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For a closed affine manifold of dimension
the developing map defines an open subset
. We show that
cannot lie between parallel hyperplanes. When
we show that any nonconstant polynomial
is unbounded on
. If
lies in a half-space we show
has zero Euler characteristic. Under various special conditions on
we show that
has no nonconstant functions given by polynomials in affine coordinates.
- [B] J. P. Benzecri, Variétés localement plates, Thesis, Princeton Univ., Princeton, N. J., 1955.
- [Bo] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0251042
- [FGH] David Fried, William Goldman, and Morris W. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), no. 4, 487–523. MR 656210, https://doi.org/10.1007/BF02566225
- [M] John Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), no. 2, 178–187. MR 454886, https://doi.org/10.1016/0001-8708(77)90004-4
- [NY] Tadashi Nagano and Katsumi Yagi, The affine structures on the real two-torus. I, Osaka Math. J. 11 (1974), 181–210. MR 377917
- [Th]
W. Thurston, The geometry and topology of
-manifolds, Princeton Lecture Notes, Princeton Univ. Press, Princeton, N. J., Chapter IV, 1978.
- [T] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 286898, https://doi.org/10.1016/0021-8693(72)90058-0
- [W] Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C15, 57R99, 58C05
Retrieve articles in all journals with MSC: 53C15, 57R99, 58C05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0675076-0
Article copyright:
© Copyright 1982
American Mathematical Society