An elementary integral solution operator for the Cauchy-Riemann equations on pseudoconvex domains in $\textbf {C}^{n}$
HTML articles powered by AMS MathViewer
- by R. Michael Range
- Trans. Amer. Math. Soc. 274 (1982), 809-816
- DOI: https://doi.org/10.1090/S0002-9947-1982-0675081-4
- PDF | Request permission
Abstract:
An integral representation formula for $(0,q)$ forms is constructed on a strictly pseudoconvex domain $D$ in $\mathbf {C}^n$ by using only the local geometry of the boundary of $D$. By combining this representation with elementary results about compact operators in Banach spaces, one obtains the solution of the Levi problem and, more importantly, an integral solution operator for $\bar {\partial }$ on $D$. The construction does not need any a priori knowledge of the solvability of $\bar {\partial }$ and thus allows us to establish fundamental global results by a direct and elementary method.References
- John Erik Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), no. 2, 529–569. MR 422683, DOI 10.2307/2373900
- Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 98847, DOI 10.2307/1970257
- Reese Harvey and John Polking, Fundamental solutions in complex analysis. I. The Cauchy-Riemann operator, Duke Math. J. 46 (1979), no. 2, 253–300. MR 534054
- Hans Hefer, Zur Funktionentheorie mehrerer Veränderlichen. Über eine Zerlegung analytischer Funktionen und die Weilsche Integraldarstellung, Math. Ann. 122 (1950), 276–278 (German). MR 39082, DOI 10.1007/BF01342970 G. M. Henkin, Integral representation of functions in strictly pseudoconvex domains and applications to the $\bar {\partial }$-problem, Math. USSR-Sb. 11 (1970), 273-281.
- N. Kerzman and E. M. Stein, The Szegő kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), no. 2, 197–224. MR 508154, DOI 10.1215/S0012-7094-78-04513-1
- Walter Koppelman, The Cauchy integral for differential forms, Bull. Amer. Math. Soc. 73 (1967), 554–556. MR 216027, DOI 10.1090/S0002-9904-1967-11744-0
- Ingo Lieb, Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten. Beschränkte Lösungen, Math. Ann. 190 (1970/71), 6–44 (German). MR 283235, DOI 10.1007/BF01349966 K. Oka, Sur les fonctions analytiques de plusieurs variables. I: Domaines convexes par rapport aux fonctions rationelles, J. Sci. Hiroshima Univ. Ser. A 6 (1936), 245-255.
- R. Michael Range and Yum-Tong Siu, Uniform estimates for the $\bar \partial$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325–354. MR 338450, DOI 10.1007/BF01355986
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 274 (1982), 809-816
- MSC: Primary 32F20; Secondary 35N15
- DOI: https://doi.org/10.1090/S0002-9947-1982-0675081-4
- MathSciNet review: 675081