Nonstandard construction of the stochastic integral and applications to stochastic differential equations. II
HTML articles powered by AMS MathViewer
- by Douglas N. Hoover and Edwin Perkins
- Trans. Amer. Math. Soc. 275 (1983), 37-58
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678335-1
- PDF | Request permission
Part I: Trans. Amer. Math. Soc. (1) (1983), 1-36
Abstract:
H. J. Keisler has recently used a nonstandard theory of Itô integration (due to R. M. Anderson) to construct solutions of Itô integral equations by solving an associated internal difference equation. In this paper we use the same general approach to find solutions $y(t)$ of semimartingale integral equations of the form \[ y(t,\omega ) = h(t,\omega ) + \int _0^t {f(s,\omega ,y(\cdot ,\omega )) dz(s)} \], where $z$ is a given semimartingale, $h$ is a right-continuous process and $f(s,\omega , \cdot )$ is continuous on the space of right-continuous functions with left limits, with the topology of uniform convergence on compacts. In addition, we generalize Keisler’s continuity theorem and give necessary and sufficient conditions for an internal martingale to be $S$-continuous.References
- D. J. Aldous, Weak convergence and the general theory of processes, École d’Été de Probabilités de Saint-Flour, 1983 (to appear).
- Catherine Doléans-Dade, On the existence and unicity of solutions of stochastic integral equations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 2, 93–101. MR 413270, DOI 10.1007/BF00533992
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Douglas N. Hoover and H. Jerome Keisler, Adapted probability distributions, Trans. Amer. Math. Soc. 286 (1984), no. 1, 159–201. MR 756035, DOI 10.1090/S0002-9947-1984-0756035-8
- Douglas N. Hoover and Edwin Perkins, Nonstandard construction of the stochastic integral and applications to stochastic differential equations. I, II, Trans. Amer. Math. Soc. 275 (1983), no. 1, 1–36, 37–58. MR 678335, DOI 10.1090/S0002-9947-1983-0678335-1
- H. Jerome Keisler, An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. 48 (1984), no. 297, x+184. MR 732752, DOI 10.1090/memo/0297
- Tom L. Lindstrøm, Hyperfinite stochastic integration. I. The nonstandard theory, Math. Scand. 46 (1980), no. 2, 265–292. MR 591606, DOI 10.7146/math.scand.a-11868
- Tom L. Lindstrøm, Hyperfinite stochastic integration. I. The nonstandard theory, Math. Scand. 46 (1980), no. 2, 265–292. MR 591606, DOI 10.7146/math.scand.a-11868 L. Panetta, Hyperreal probability spaces: some applications of the Loeb construction, Ph. D. thesis, Univ. of Wisconsin, Madison, Wis., 1978.
- Philip E. Protter, On the existence, uniqueness, convergence and explosions of solutions of systems of stochastic integral equations, Ann. Probability 5 (1977), no. 2, 243–261. MR 431380, DOI 10.1214/aop/1176995849
- Philip Protter, Right-continuous solutions of systems of stochastic integral equations, J. Multivariate Anal. 7 (1977), no. 1, 204–214. MR 436321, DOI 10.1016/0047-259X(77)90039-2
- K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Pure and Applied Mathematics, No. 72, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0491163
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 37-58
- MSC: Primary 60H10; Secondary 03H05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678335-1
- MathSciNet review: 678335