Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Mixed Hodge structures
HTML articles powered by AMS MathViewer

by Fouad El Zein PDF
Trans. Amer. Math. Soc. 275 (1983), 71-106 Request permission

Abstract:

The theory of Mixed Hodge Structures (M.H.S.) on the cohomology of an algebraic variety $X$ over complex numbers was found by Deligne in 1970. The case when $X$ is a Normal Crossing Divisor is fundamental. When the variety $X$ is embedded in a smooth ambient space we get the Mixed Hodge Structure using standard exact sequences in topology. This technique uses resolution of singularities one time for a complete variety and $2$ times for a quasi-projective one. As applications to the study of local cohomology we give the spectral sequence to the Mixed Hodge Structure on cohomology with support on a subspace $Y$.
References
  • Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692
  • F. Elzein, Complexe dualisant et applications, Bull. Soc. Math. France, Mémoire No. 58, 1978. P. Griffiths and W. Schmid, Recent developments in Hodge theory, Proc. Internat. Colloq. Discrete Subgroups Lie Groups (Bombay), 1973. P. Deligne (Editor), Séminaire de Géométrie Algébrique SGA $4\frac {1} {2}$, Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin and New York, 1977 (Catégories dériveé, by J. L. Verdier, p. 262).
  • Jean-Louis Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295–312 (French). MR 481096, DOI 10.1007/BF01390015
  • —, Séminaire Bourbaki 1965/66, Exposé no. 300.
  • Philippe Du Bois, Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. France 109 (1981), no. 1, 41–81 (French). MR 613848, DOI 10.24033/bsmf.1932
Similar Articles
Additional Information
  • © Copyright 1983 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 275 (1983), 71-106
  • MSC: Primary 14C30; Secondary 14F40, 18E30, 32J25
  • DOI: https://doi.org/10.1090/S0002-9947-1983-0678337-5
  • MathSciNet review: 678337