Quadratic forms permitting triple composition
HTML articles powered by AMS MathViewer
- by Kevin McCrimmon PDF
- Trans. Amer. Math. Soc. 275 (1983), 107-130 Request permission
Abstract:
In an algebraic investigation of isoparametric hypersurfaces, J. Dorfmeister and E. Neher encountered a nondegerate quadratic form which permitted composition with a trilinear product, $Q\left (\{{xyz} \} \right ) = Q(x)Q(y)Q(z)$. In this paper we give a complete description of such composition triples: they are all obtained as isotopes of permutations of standard triples $\{xyz \} = (xy)z$ or $x(yz)$ determined by a composition algebra, with the quadratic form $Q$ the usual norm form. For any fixed $Q$ this leads to $1$ isotopy class in dimensions $1$ and $2$, $3$ classes in the dimension $4$ quaternion case, and $6$ classes in the dimension $8$ octonion case.References
- N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo (2) 7 (1958), 55–80. MR 101253, DOI 10.1007/BF02854388
- N. Jacobson, Triality and Lie algebras of type $\textrm {D}_{4}$, Rend. Circ. Mat. Palermo (2) 13 (1964), 129–153. MR 181705, DOI 10.1007/BF02849523
- Irving Kaplansky, Infinite-dimensional quadratic forms admitting composition, Proc. Amer. Math. Soc. 4 (1953), 956–960. MR 59895, DOI 10.1090/S0002-9939-1953-0059895-7
- K. A. Ževlakov, A. M. Slin′ko, I. P. Šestakov, and A. I. Širšov, Kol′tsa, blizkie k assotsiativnym, Sovremennaya Algebra. [Modern Algebra], “Nauka”, Moscow, 1978 (Russian). MR 518614
- F. van der Blij and T. A. Springer, Octaves and triality, Nieuw Arch. Wisk. (3) 8 (1960), 158–169. MR 123622
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 107-130
- MSC: Primary 17A40
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678338-7
- MathSciNet review: 678338