Dynamical systems and extensions of states on $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Nghiem Dang-Ngoc PDF
- Trans. Amer. Math. Soc. 275 (1983), 143-152 Request permission
Abstract:
Let $(A,G,\tau )$ be a noncommutative dynamical system, i.e. $A$ is a ${C^{\ast } }$-algebra, $G$ a topological group and $\tau$ an action of $G$ on $A$ by $^{\ast }$-automorphisms, and let $({M_\alpha })$ be an $M$-net on $G$. We characterize the set of $a$ in $A$ such that ${M_\alpha }a$ converges in norm. We show that this set is intimately related to the problem of extensions of pure states of R. V. Kadison and I. M. Singer: if $B$ is a maximal abelian subalgebra of $A$, we can associate a dynamical system $(A,G,\tau )$ such that ${M_\alpha }a$ converges in norm if and only if all extensions to $A$, of a homomorphism of $B$, coincide on $a$. This result allows us to construct different examples of a ${C^{\ast } }$-algebra $A$ with maximal abelian subalgebra $B$ (isomorphic to $C({\mathbf {R}}/{\mathbf {Z}})$ or ${L^\infty }[0,1])$ for which the property of unique pure state extension of homomorphisms is or is not verified.References
- Joel Anderson, Extensions, restrictions, and representations of states on $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 249 (1979), no. 2, 303–329. MR 525675, DOI 10.1090/S0002-9947-1979-0525675-1
- J.-P. Conze and N. Dang-Ngoc, Ergodic theorems for noncommutative dynamical systems, Invent. Math. 46 (1978), no. 1, 1–15. MR 500185, DOI 10.1007/BF01390100
- Dang Ngoc Nghiem, Sur la classification des systèmes dynamiques non commutatifs, J. Functional Analysis 15 (1974), 188–201 (French, with English summary). MR 0348509, DOI 10.1016/0022-1236(74)90018-4
- Manfred Denker, On strict ergodicity, Math. Z. 134 (1973), 231–253. MR 352402, DOI 10.1007/BF01214097
- Manfred Denker and Ernst Eberlein, Ergodic flows are strictly ergodic, Advances in Math. 13 (1974), 437–473. MR 352403, DOI 10.1016/0001-8708(74)90075-9
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217–240. MR 36455, DOI 10.1090/S0002-9947-1949-0036455-9
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. MR 0251549 G. Hansel and J.-P. Raoult, Ergodicité, uniformité et unique ergodicité.
- Richard V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383–400. MR 123922, DOI 10.2307/2372748
- I. Kovács and J. Szűcs, Ergodic type theorems in von Neumann algebras, Acta Sci. Math. (Szeged) 27 (1966), 233–246. MR 209857
- Wolfgang Krieger, On unique ergodicity, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 327–346. MR 0393402
- E. Christopher Lance, Ergodic theorems for convex sets and operator algebras, Invent. Math. 37 (1976), no. 3, 201–214. MR 428060, DOI 10.1007/BF01390319
- G. A. Reid, On the Calkin representations, Proc. London Math. Soc. (3) 23 (1971), 547–564. MR 293413, DOI 10.1112/plms/s3-23.3.547
- David Ruelle, Statistical mechanics: Rigorous results, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0289084
- Masamichi Takesaki, Conditional expectations in von Neumann algebras, J. Functional Analysis 9 (1972), 306–321. MR 0303307, DOI 10.1016/0022-1236(72)90004-3
- Jun Tomiyama, On some types of maximal abelian subalgebras, J. Functional Analysis 10 (1972), 373–386. MR 0341126, DOI 10.1016/0022-1236(72)90035-3
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 143-152
- MSC: Primary 46L55; Secondary 47A35
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678340-5
- MathSciNet review: 678340