## Normal subgroups of $\textrm {Diff}^{\Omega }(\textbf {R}^{n})$

HTML articles powered by AMS MathViewer

- by Francisca Mascaró PDF
- Trans. Amer. Math. Soc.
**275**(1983), 163-173 Request permission

## Abstract:

Let $\Omega$ be a volume element on ${{\mathbf {R}}^n}$. ${\text {Dif}}{{\text {f}}^\Omega }({{\mathbf {R}}^n})$ is the group of $\Omega$-preserving diffeomorphisms of ${{\mathbf {R}}^n}$. ${\text {Diff}}_W^\Omega ({{\mathbf {R}}^n})$ is the subgroup of all elements whose set of nonfixed points has finite $\Omega$-volume. ${\text {Diff}}_f^\Omega ({{\mathbf {R}}^n})$ is the subgroup of all elements whose support has finite $\Omega$-volume. ${\text {Diff}}_c^\Omega ({{\mathbf {R}}^n})$ is the subgroup of all elements with compact support. ${\text {Diff}}_{{\text {co}}}^\Omega ({{\mathbf {R}}^n})$ is the subgroup of all elements compactly $\Omega$-isotopic to the identity. We prove, in the case ${\text {vo}}{{\text {l}}_{\Omega }}{{\mathbf {R}}^n} < \infty$ and for ${\text {n}} \geqslant {\text {3}}$ that any subgroup of ${\text {Dif}}{{\text {f}}^\Omega }({{\mathbf {R}}^n})$, $N$, is normal if and only if ${\text {Diff}}_{{\text {co}}}^\Omega ({{\mathbf {R}}^n}) \subset N \subset {\text {Diff}}_c^\Omega ({{\mathbf {R}}^n})$. If ${\text {vo}}{{\text {l}}_{\Omega }}{{\mathbf {R}}^n} = \infty$, any subgroup of ${\text {Dif}}{{\text {f}}^\Omega }({{\mathbf {R}}^n})$, $N$, satisfying ${\text {Diff}}_{{\text {co}}}^\Omega ({{\mathbf {R}}^n}) \subset N \subset {\text {Diff}}_c^\Omega ({{\mathbf {R}}^n})$ is normal, for $n \geqslant {\text {3}}$, there are no normal subgroups between ${\text {Diff}}_W^\Omega ({{\mathbf {R}}^n})$ and ${\text {Dif}}{{\text {f}}^\Omega }({{\mathbf {R}}^n})$ and for $n \geqslant 4$ there are no normal subgroups between ${\text {Diff}}_c^\Omega ({{\mathbf {R}}^n})$ and ${\text {Diff}}_f^\Omega ({{\mathbf {R}}^n})$.## References

- Augustin Banyaga,
*Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique*, Comment. Math. Helv.**53**(1978), no. 2, 174–227 (French). MR**490874**, DOI 10.1007/BF02566074 - Marcel Berger, Paul Gauduchon, and Edmond Mazet,
*Le spectre d’une variété riemannienne*, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR**0282313**, DOI 10.1007/BFb0064643 - Dan Burghelea and Richard Lashof,
*The homotopy type of the space of diffeomorphisms. I, II*, Trans. Amer. Math. Soc.**196**(1974), 1–36; ibid. 196 (1974), 37–50. MR**356103**, DOI 10.1090/S0002-9947-1974-0356103-2 - Jean Cerf,
*Sur les difféomorphismes de la sphère de dimension trois $(\Gamma _{4}=0)$*, Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). MR**0229250**, DOI 10.1007/BFb0060395 - D. B. A. Epstein,
*The simplicity of certain groups of homeomorphisms*, Compositio Math.**22**(1970), 165–173. MR**267589** - R. E. Greene and K. Shiohama,
*Diffeomorphisms and volume-preserving embeddings of noncompact manifolds*, Trans. Amer. Math. Soc.**255**(1979), 403–414. MR**542888**, DOI 10.1090/S0002-9947-1979-0542888-3 - A. B. Krygin,
*Extension of diffeomorphisms that preserve volume*, Funkcional. Anal. i Priložen.**5**(1971), no. 2, 72–76 (Russian). MR**0368067**
W. Ling, - Dusa McDuff,
*The lattice of normal subgroups of the group of diffeomorphisms or homeomorphisms of an open manifold*, J. London Math. Soc. (2)**18**(1978), no. 2, 353–364. MR**509952**, DOI 10.1112/jlms/s2-18.2.353 - Dusa McDuff,
*On the group of volume-preserving diffeomorphisms of $\textbf {R}^{n}$*, Trans. Amer. Math. Soc.**261**(1980), no. 1, 103–113. MR**576866**, DOI 10.1090/S0002-9947-1980-0576866-3 - Dusa McDuff,
*On groups of volume-preserving diffeomorphisms and foliations with transverse volume form*, Proc. London Math. Soc. (3)**43**(1981), no. 2, 295–320. MR**628279**, DOI 10.1112/plms/s3-43.2.295 - Dusa McDuff,
*On tangle complexes and volume-preserving diffeomorphisms of open $3$-manifolds*, Proc. London Math. Soc. (3)**43**(1981), no. 2, 321–333. MR**628280**, DOI 10.1112/plms/s3-43.2.321 - Jürgen Moser,
*On the volume elements on a manifold*, Trans. Amer. Math. Soc.**120**(1965), 286–294. MR**182927**, DOI 10.1090/S0002-9947-1965-0182927-5 - Raghavan Narasimhan,
*Analysis on real and complex manifolds*, Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968. MR**0251745** - Richard S. Palais,
*Local triviality of the restriction map for embeddings*, Comment. Math. Helv.**34**(1960), 305–312. MR**123338**, DOI 10.1007/BF02565942 - Stanisław Saks,
*Theory of the integral*, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR**0167578**
W. Thurston,

*Simple and perfect groups of manifold automorphism germs*, preprint. —,

*Real analytic diffeomorphisms of*${R^n}$. I, preprint. F. Mascaro,

*On the normal subgroups of the group of volume preserving diffeomorphisms of*${{\mathbf {R}}^n}$

*for*$n \geqslant {\text {3}}$, Thesis, University of Warwick. J. Mather,

*Notes on topological stability*, Harvard University, 1970.

*On the structure of the group of volume preserving diffeomorphisms*(to appear).

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**275**(1983), 163-173 - MSC: Primary 58D05; Secondary 57R50
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678342-9
- MathSciNet review: 678342