On the absence of positive eigenvalues of Schrödinger operators with long range potentials
HTML articles powered by AMS MathViewer
- by Hubert Kalf and V. Krishna Kumar PDF
- Trans. Amer. Math. Soc. 275 (1983), 215-229 Request permission
Abstract:
In this paper we consider the problem of obtaining upper bounds for the positive bound states associated with the Schrödinger operators with long range potentials. We have extended the size of the class of long range potentials for which one can establish the nonexistence of positive eigenvalues, improving upon the recent results of G. B. Khosrovshahi, H. A. Levine and L. E. Payne (Trans. Amer. Math. Soc. 253 (1979), 211-228).References
- Shmuel Agmon, Lower bounds for solutions of Schrödinger equations, J. Analyse Math. 23 (1970), 1–25. MR 276624, DOI 10.1007/BF02795485
- F. V. Atkinson, The asymptotic solution of second-order differential equations, Ann. Mat. Pura Appl. (4) 37 (1954), 347–378. MR 67289, DOI 10.1007/BF02415105
- Michael S. P. Eastham and Hubert Kalf, Schrödinger-type operators with continuous spectra, Research Notes in Mathematics, vol. 65, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667015
- D. M. Èĭdus, The principle of limiting amplitude, Uspehi Mat. Nauk 24 (1969), no. 3(147), 91–156 (Russian). MR 0601072
- H. Kalf, Non-existence of eigenvalues of Schrödinger operators, Proc. Roy. Soc. Edinburgh Sect. A 79 (1977/78), no. 1-2, 157–172. MR 484601, DOI 10.1017/S0308210500016887
- Tosio Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math. 12 (1959), 403–425. MR 108633, DOI 10.1002/cpa.3160120302
- G. B. Khosrovshahi, H. A. Levine, and L. E. Payne, On the positive spectrum of Schrödinger operators with long range potentials, Trans. Amer. Math. Soc. 253 (1979), 211–228. MR 536943, DOI 10.1090/S0002-9947-1979-0536943-1
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959 S. N. Roze, On the spectrum of an elliptic operator of second order, Math. USSR Sb. 9 (1969), 183-197.
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 215-229
- MSC: Primary 35P15; Secondary 35J10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678345-4
- MathSciNet review: 678345