DIMENSION OF STRATIFIABLE SPACES

BY

SHINPEI OKA

Abstract. We define a subclass, denoted by \(EM_3 \), of the class of stratifiable spaces, and obtain several dimension theoretical results for \(EM_3 \) including the coincidence theorem for \(\dim \) and \(\text{Ind} \). The class \(EM_3 \) is countably productive, hereditary, preserved under closed maps and, furthermore, the largest subclass of stratifiable spaces in which a harmonious dimension theory can be established.

1. Introduction. Beyond metric spaces, the following line of generalized metric spaces has been established by many authors [S, C, B, H, Ok]:

\[
\text{metric} \rightarrow \text{Lašnev}^1 \rightarrow M_1 \rightarrow \text{stratifiable} \rightarrow \text{paracompact } \sigma.
\]

After Katětov and Morita's work for metric spaces, the first attack to this line in dimension theory was done by Leibo [L.] who proved the equality \(\dim X = \text{Ind} X \) for any Lašnev space \(X \). Nagami extended this result by defining \(L \)-spaces [N.] and free \(L \)-spaces [N.]. Free \(L \)-spaces form a countably productive and hereditary class containing every Lašnev space and included in the class of \(M_1 \)-spaces. It is now desired to develop a satisfactory dimension theory of a still larger class of generalized metric spaces, say, \(M_1 \)-spaces or stratifiable spaces.

In this direction we define a subclass of stratifiable spaces in terms of a special kind of \(\sigma \)-closure-preserving collection.

Definition 1.1. Let \(X \) be a space. A collection \(\mathcal{S} \) of subsets of \(X \) is called an encircling net (or, for short, \(E \)-net) if for any point \(x \) and any open neighborhood \(U \) of \(x \), there exists a subcollection \(\mathcal{T} \) of \(\mathcal{S} \) such that \(x \in X - \mathcal{T}^* \subseteq U \) and \(\mathcal{T}^* \) is a closed set of \(X \) (where \(\mathcal{T}^* \) denotes the union of the members of \(\mathcal{T} \)).

By \(EM_3 \) we denote the class of stratifiable spaces with \(\sigma \)-closure-preserving \(E \)-nets, and by \(M_3 \) the class of stratifiable spaces.

The class \(EM_3 \) is countably productive, hereditary and preserved under closed maps as well as perfect maps (Corollary 3.9).

Our first main result is a characterization of members of \(EM_3 \) as those spaces which are the perfect (closed) images of zero-dimensional stratifiable spaces (Theorem 3.8). This means that \(EM_3 \) is just the maximal perfect subclass of \(M_3 \) in the sense of Nagami [N.].
The second main results appear in Theorems 4.2 and 4.3 and consist of the following theorems for EM3:
(a) the equidimensional G_s-envelope theorem,
(b) the dimension raising theorem,\(^2\)
(c) the decomposition theorem,
(d) the coincidence theorem for dim and Ind.

These theorems for EM3 extend the corresponding theorems for free L-spaces \([N_4]\) as well as those for Lašnev spaces \([L_{11}, L_{2}, O_{11}]\).

It is an open problem whether the inclusion $EM_3 \subset M_3$ is proper. But the characterization above implies that EM_3 is the largest\(^3\) subclass of M_3 in which the dimension raising theorem holds. We also see in Corollary 4.5 that EM_3 is the largest\(^3\) subclass of M_3 in which the decomposition theorem and the equidimensional G_s-envelope theorem simultaneously hold.

Our arguments are based on Gruenhage and Junnila's result that a stratifiable space is an M_2-space \([G, J]\). Indeed, though we use the word "stratifiable" in view of its significance, what we need is only the existence of a σ-closure-preserving quasi-base.

Conventions. Throughout this paper a space is a *Hausdorff topological space*, and a map means an onto continuous one. Let X, Y be spaces and let $f : X \to Y$ be a map. For a collection \mathcal{F} of subsets of X, the symbol \mathcal{F}^* denotes the union of all members of \mathcal{F}, and $f(\mathcal{F})$ means the collection of subsets of Y of the form $\{f(F) : F \in \mathcal{F}\}$. For a subset Z of X we denote by \overline{Z} (or $\text{Cl} Z$) the closure of Z, by $\text{Int} Z$ the interior of Z, and by $\text{Bd} Z$ the boundary of Z.

2. Encircling nets and large encircling nets. Encircling nets are naturally strengthened as follows:

Definition 2.1. Let X be a space. A collection \mathcal{E} of subsets of X is called a *large encircling net* (or, simply, an *LE-net*) if for any disjoint closed sets C and K of X, there exists a subcollection $\mathcal{E}_0 \subset \mathcal{E}$ such that $C \in \mathcal{E}_0 \subset X - K$ and \mathcal{E}_0^* is a closed set of X.

Remarks. Since an LE-net is a net in the usual sense, it follows from Siwiec-Nagata [SN] that a space with a σ-closure-preserving LE-net is a σ-space. But a space with a σ-closure-preserving E-net is not necessarily a σ-space as will be seen in Example 2.8. On the other hand it is trivial that a regular σ-space X with $\text{ind} X \leq 0$ admits a σ-closure-preserving E-net, and that a normal σ-space X with $\text{dim} X \leq 0$ admits a σ-closure-preserving LE-net.

Proposition 2.2. A metric space admits a σ-locally finite LE-net.

Proof. Let M be a metric spaces and \{\(\mathcal{S}_i\); \(i = 1, 2, \ldots\)\} a sequence of locally finite closed covers of M such that, for each i, the diameter of each member of \mathcal{S}_i is smaller than $1/i$. Let C, K be disjoint closed sets of M and put

$$\mathcal{F}_i = \{ E \in \mathcal{S}_i ; E \cap C \neq \emptyset \text{ and } E \cap K = \emptyset \}.$$

\(^2\) The dimension raising theorem for a topological class \mathcal{C} is: If $X \in \mathcal{C}$ and $\text{dim} X \leq n$, then X is the image of a space $X_0 \in \mathcal{C}$ with $\text{dim} X_0 \leq 0$ under a perfect map of order not greater than $n + 1$.

\(^3\) When using this word we take no account of infinite-dimensional spaces in the sense of dim.
It is then clear that \(\bigcup_{i=1}^{\infty} \mathcal{S}_i^* \) is a closed set of \(X \) including \(C \) but not meeting \(K \). Hence \(\bigcup_{i=1}^{\infty} \mathcal{S}_i \) is a \(\sigma \)-locally finite \(LE \)-net on \(M \), which completes the proof.

Proposition 2.3. The property of having a \(\sigma \)-closure-preserving \(LE \)-net is preserved under closed maps.

We thus have

Proposition 2.4. A Lašnev space admits a \(\sigma \)-closure-preserving \(LE \)-net, and hence it is a member of \(EM_3 \).

Lemma 2.5. If \(\mathcal{S} \) is an \(E \)-net (resp. \(LE \)-net) on a space, then \(\{ E : E \in \mathcal{S} \} \) is an \(E \)-net (resp. \(LE \)-net) on the space.

Proposition 2.6. The property of having a \(\sigma \)-closure-preserving \(E \)-net is countably productive, hereditary and preserved under perfect maps.

Proof. Let \(X_i, i = 1, 2, \ldots, \) be spaces with \(\sigma \)-closure-preserving \(E \)-nets \(\mathcal{S}_i \). It is then clear that

\[
\left\{ E_j \times \prod_{i=1, i \neq j}^{\infty} X_i : E_j \in \mathcal{S}_j, j = 1, 2, \ldots \right\}
\]

is a \(\sigma \)-closure-preserving \(E \)-net on \(\prod_{i=1}^{\infty} X_i \).

By the preceding lemma it is obvious that the property is hereditary.

Let \(X \) be a space with a \(\sigma \)-closure-preserving \(E \)-net \(\mathcal{S} \) and let \(f : X \to Y \) be a perfect map onto a space \(Y \). By Lemma 2.5 we may assume that every finite intersection of members of \(\mathcal{S} \) is again a member of \(\mathcal{S} \). To show that \(f(\mathcal{S}) \) is an \(E \)-net on \(Y \) let \(y \in Y \) and let \(U \) be an open neighborhood of \(y \). There exist subcollections \(\mathcal{S}_i, 1 \leq i \leq k \), of \(\mathcal{S} \) such that \(f^{-1}(y) \subset X - \bigcap_{i=1}^{k} \mathcal{S}_i^* \subset f^{-1}(U) \) and \(\mathcal{S}_i^* \) is a closed set of \(X \). It then follows from assumption that \(f(\bigcap_{i=1}^{k} \mathcal{S}_i^*) \) is a closed set of \(Y \) written as a union of members of \(f(\mathcal{S}) \) such that \(y \in Y - f(\bigcap_{i=1}^{k} \mathcal{S}_i^*) \subset U \). This completes the proof.

Proposition 2.7. Let \(X \) be a space (resp. a semistratifiable space). Then the following statements are equivalent:

1. \(X \) admits a \(\sigma \)-closure-preserving \(LE \)-net (resp. \(E \)-net).
2. \(X \) admits a \(\sigma \)-locally finite \(LE \)-net (resp. \(E \)-net).
3. \(X \) admits a \(\sigma \)-discrete \(LE \)-net (resp. \(E \)-net).

Proof. It follows from Lemma 2.5 and a remark above that a space with a \(\sigma \)-closure-preserving \(LE \)-net admits a \(\sigma \)-closure-preserving net of closed sets, and therefore it is semistratifiable. Hence the proposition is immediate from Lemma 2.5 and the following fact, which is essentially due to Siwiec and Nagata [SN]: Let \(X \) be a semistratifiable space and \(\mathcal{S} \) a \(\sigma \)-closure-preserving collection of closed sets of \(X \). Then there exists a \(\sigma \)-discrete collection \(\mathcal{S} \) of closed sets of \(X \) such that each member of \(\mathcal{S} \) is a union of members of \(\mathcal{S} \).

As for famous pathological spaces, we have the following results which imply particularly that the existence of \(\sigma \)-closure-preserving \(E \)-nets does not mean, in general, that of \(\sigma \)-closure-preserving \(LE \)-nets (but, for stratifiable spaces, the former means the latter as will be seen in Theorem 3.8).
Examples 2.8. (1) The Michael line $I(M)$ has a σ-discrete E-net, but does not have a σ-closure-preserving LE-net.

(2) The same is true for the Sorgenfrey line $R(S)$.

(3) $[0, \omega_1]$ does not admit a σ-closure-preserving E-net.

(4) The quotient space $I(M)/Q$ obtained by identifying the rational points in $I(M)$ does not admit a σ-closure-preserving E-net. In particular the property of having a σ-closure-preserving E-net is not preserved under closed maps.

Proof. (1) and (2) (simultaneously). Let \mathcal{F} be a σ-discrete net of closed sets in the unit interval I (resp. the real line R) with the usual topology. It is easy to see that \mathcal{F} is a σ-discrete E-net on $I(M)$ (resp. $R(S)$). But $I(M)$ (resp. $R(S)$) does not admit a σ-closure-preserving LE-net because it is not a σ-space.

(3) For any σ-closure-preserving collection \mathcal{F} of $[0, \omega_1]$, \mathcal{F} fails to be an E-net at ω_1; indeed, $\text{Cl}(\{\bar{F}: F \in \mathcal{F}, \omega_1 \not\in \bar{F}\}) \cap \{\omega_1\} = \emptyset$.

(4) If $I(M)/Q$ had a σ-closure-preserving E-net, then every point in $I(M)/Q$, in particular the quotient image of Q, would be a G_δ-set of $I(M)/Q$; but this is impossible because Q is not a G_δ-set of $I(M)$.

Lemma 3.1 [O2, Lemma 3.1]. Let X be a submetrizable space (that is, X admits a weaker metric topology), and let \mathcal{U} be a σ-discrete collection of cozero sets of X. Then there exists a metric space M and a one-to-one map $f: X \to M$ such that $f(U)$ is an open set of M for every $U \in \mathcal{U}$.

The following lemma plays a fundamental role in this paper.

Lemma 3.2. Let X be a paracompact σ-space and let $\mathcal{F} = \bigcup_{i=1}^\infty \mathcal{F}_i$ be a collection of closed sets of X such that \mathcal{F}_i is closure-preserving for each i. Then there exist a metric space M and a one-to-one map $f: X \to M$ such that $f(F)$ is a closed set of M for every $F \in \mathcal{F}$ and such that $f(\mathcal{F}_i)$ is closure-preserving in M for every i.

Proof. Let $\mathcal{B} = \bigcup_{i=1}^\infty \mathcal{B}_i$ be a net of X consisting of closed sets such that \mathcal{B}_i is discrete for each i. For each i let $\mathcal{V}_i = \{V_i(F): B \in \mathcal{B}_i\}$ be a discrete collection of open sets of X such that $B \subset V_i(F)$ for each $B \in \mathcal{B}_i$. For $i, j = 1, 2, \ldots, B \in \mathcal{B}_i$, put

$$W_i(B) = V_i(B) \cap \left(X - \{F: F \in \mathcal{B}_j, F \cap B = \emptyset\}^* \right).$$

Then $W_i(B)$ is an open set of X, and $\{W_i(B): B \in \mathcal{B}_i\}$ is discrete in X. Hence Lemma 3.1 applies to give a metric space M and a one-to-one map $f: X \to M$ such that $f(W_i(B))$ is an open set of M for every $B \in \mathcal{B}_i$, $i, j = 1, 2, \ldots$. It is then obvious that for each i, $f(\mathcal{F}_i)$ is a closure-preserving collection of closed sets of M. This completes the proof.

Definition 3.3. Let $X \in EM_3$ and let $\{\mathcal{F}, \mathcal{V}, \mathcal{S}, \mathcal{S}\}$ be a quartet of collections of subsets of X. The quartet is called an E-quartet if we can write $\mathcal{F} = \bigcup_{i=1}^\infty \mathcal{F}_i$, $\mathcal{V} = \bigcup_{i=1}^\infty \mathcal{V}_i$, $\mathcal{S} = \bigcup_{i=1}^\infty \mathcal{S}_i$, $\mathcal{S} = \bigcup_{i=1}^\infty \mathcal{S}_i$, and if the following four conditions are satisfied:

(1) \mathcal{F} is a net on X consisting of closed sets.
(2) For each i, \(V_i \) is a discrete collection of open sets of X written as \(V_i = \{ V_i(F) : F \in T_i \} \) in such a manner that \(F \subseteq V_i(F) \) for each \(F \in T_i \).

(3) \(S \) is an E-net on X consisting of closed sets and \(S_i \) is closure-preserving for each i.

(4) \(S \) is a quasi-base\(^4\) for X consisting of closed sets and \(S_i \) is closure-preserving for each i.

By Heath [H], Gruenhage [G] and Junnila [J], each member of \(EM_3 \) admits an E-quartet.

Definition 3.4. Let X be a member of \(EM_3 \) with an E-quartet \(\{ T, V, \mathcal{S}, S \} \). A map \(f: X \to Y \) onto a normal space Y is called an E-map with respect to the E-quartet if the following five conditions are satisfied:

1. \(f \) is one-to-one.
2. \(f(F) \) is a closed set for every \(F \in T \).
3. \(f(V) \) is an open set for every \(V \in V \).
4. \(f(E) \) is a closed set for every \(E \in \mathcal{S} \), and \(f(S_i) \) is closure-preserving in Y for every i.
5. \(f(S) \) is a closed set for every \(S \in S \), and \(f(S_i) \) is closure-preserving in Y for every i.

Noting that \(\{ X - V : V \in V \} \) is a \(\sigma \)-closure-preserving collection of closed sets of X, we have the following result by virtue of Lemma 3.2.

Proposition 3.5. Let X be a member of \(EM_3 \). Then for any E-quartet of X there exist a metric space M and an E-map \(f: X \to M \) with respect to the E-quartet.

The following lemma is well known (see, for example, [E, 2.3.16]).

Lemma 3.6. Let X be a space and let \(C, K \) be disjoint closed sets of X. Let \(\mathcal{U} \) be a countable open cover of X such that for each \(U \in \mathcal{U} \), either \(\overline{U} \cap C = \emptyset \) or \(\overline{U} \cap K = \emptyset \). Then \(C \) and \(K \) are separated by a closed set \(S \) such that \(S \subseteq \{ \text{Bd } U : U \in \mathcal{U} \}^* \).

Now we have the following result frequently used later.

Proposition 3.7. Let X be a member of \(EM_3 \) with an E-quartet \(\{ T, V, \mathcal{S}, S \} \). Let \(f: X \to Y \) be an E-map with respect to the E-quartet onto a normal space Y. Then \(\text{Ind } X \leq \text{Ind } Y \).

Proof. The proof is by induction on \(\text{Ind } Y \). If \(Y = \emptyset \) then the proposition is trivial. Suppose that the proposition is valid when \(\text{Ind } Y \leq n - 1 \) and consider the case of \(\text{Ind } Y = n \). To show \(\text{Ind } X \leq n \), let \(C, K \) be disjoint closed sets of X. For the time being, fix a point \(x \) in \(X - C \) arbitrarily. We show that there exists an open neighborhood \(W \) of \(x \) such that \(\overline{W} \cap C = \emptyset \) and \(\text{Ind } \text{Bd } W \leq n - 1 \). Let \(\mathcal{S}(x) \) be a subcollection of \(\mathcal{S} \) such that \(x \in X - \mathcal{S}(x)^* \subseteq X - C \) and \(\mathcal{S}(x)^* \) is a closed set. Write \(\mathcal{S}(x) = \bigcup_{i=1}^{\infty} \mathcal{S}_i(x) \) where \(\mathcal{S}_i(x) \subseteq \mathcal{S}_i \). Put \(\mathcal{S}_i(x) = \{ S \in \mathcal{S}_i : S \cap \mathcal{S}(x)^* = \emptyset \} \)

\(^4\) A collection \(\mathcal{S} \) of subsets of a space X is called a quasi-base for X if for any point x and any open neighborhood \(U \) of x there exists a member \(S \) of \(\mathcal{S} \) such that \(x \in \text{Int } S \subseteq S \subseteq U \).
and \(S(x) = \bigcup_{i=1}^{\infty} S_i(x). \) Fix \(i_0 \) so that \(x \in \operatorname{Int} S_{i_0}(x)^* \). By (3t) and (4t) there exist open sets \(O_j, j = 1, 2, \ldots, \) of \(Y \) such that

\[
f\left(\bigcup_{j=1}^{\infty} S_j(x)^* \right) \cup f(S_{i_0}(x)^*) \subset O_j \subset \overline{O_j} \subset Y - f(S_j(x)^*)
\]

and

\[
\operatorname{Ind} \operatorname{Bd} O_j \leq n - 1.
\]

Define \(W = \bigcap_{j=1}^{\infty} f^{-1}(O_j) \). Then

\[
x \in W \subset \overline{W} \subset \bigcap_{j=1}^{\infty} f^{-1}(\overline{O_j}) \subset X - S(x)^* \subset X - C.
\]

To show that \(W \) is open, let \(x' \in W \). Since \(x' \in X - S(x)^* \) and \(S(x)^* \) is a closed set, it follows from (4q) that \(x' \in \operatorname{Int} S_{m}(x)^* \) for some \(m \). Then

\[
x' \in \bigcap_{j=1}^{m-1} f^{-1}(O_j) \cap \operatorname{Int} S_{m}(x)^* \subset W,
\]

which implies that \(W \) is open. To show \(\operatorname{Ind} \operatorname{Bd} W \leq n - 1 \), note that, for any subset \(Z \) of \(X, f|Z: Z \to f(Z) \) is again an \(E \)-map with respect to the \(E \)-quartet \(\{ S|Z, S|Z, S|Z, S|Z \} \) on \(Z \). Hence we may apply induction hypothesis to obtain \(\operatorname{Ind} f^{-1}(\operatorname{Bd} O_j) \leq n - 1, j = 1, 2, \ldots, \) which yields

\[
\operatorname{Ind} \operatorname{Bd} W \leq \operatorname{Ind} \left(\bigcup_{j=1}^{\infty} \operatorname{Bd} f^{-1}(O_j) \right)
\]

\[
= \max \left\{ \operatorname{Ind} \operatorname{Bd} f^{-1}(O_j) : j = 1, 2, \ldots \right\}
\]

\[
\leq \max \left\{ \operatorname{Ind} f^{-1}(\operatorname{Bd} O_j) : j = 1, 2, \ldots \right\} \leq n - 1.
\]

Hence \(W \) is a required open neighborhood of \(x \); we have thus finished "local" separation.

Now put

\[
\mathcal{F}_i(C) = \{ F \in \mathcal{F} : F \subset W \text{ for some open set } W \text{ with } \overline{W} \cap C = \emptyset \text{ and } \operatorname{Ind} \operatorname{Bd} W \leq n - 1 \}.
\]

Then by (1q) and by the "local" separation above, we have \(\bigcup_{i=1}^{\infty} \mathcal{F}_i(C)^* = X - C \). For each \(F \in \mathcal{F}_i(C) \), fix such a \(W \) and denote it by \(W_i(C, F) \). On the other hand, by (1t) and (2t), there exist open sets \(H_i(F), F \in \mathcal{F}_i \), of \(Y \) such that \(f(F) \subset H_i(F) \subset \overline{f(V_i(F))} \) and \(\operatorname{Ind} \operatorname{Bd} H_i(F) \leq n - 1 \) (where the set \(V_i(F) \) is as in Definition 3.3(2q)). By induction hypothesis again,

\[
\operatorname{Ind} \operatorname{Bd} f^{-1}(H_i(F)) \leq \operatorname{Ind} f^{-1}(\operatorname{Bd} H_i(F)) \leq n - 1.
\]

Put for each \(F \in \mathcal{F}_i(C) \),

\[
D_i(C, F) = W_i(C, F) \cap f^{-1}(H_i(F)).
\]

Then

\[
\operatorname{Ind} \operatorname{Bd} D_i(C, F) \leq \max \{ \operatorname{Ind} \operatorname{Bd} W_i(C, F), \operatorname{Ind} f^{-1}(H_i(F)) \} \leq n - 1.
\]
Put $D_i(C) = \{D_i(C, F) : F \in \mathcal{F}(C)\}$. Since $D_i(C, F) \subset V_i(F)$, (2$_q$) implies that $\{D_i(C, F) : F \in \mathcal{F}(C)\}$ is discrete. Thus $\text{Ind} \text{Bd} D_i(C) \leq n - 1$, $i = 1, 2, \ldots$. By the same discreteness and by the fact $D_i(C, F) \subset W_i(C, F) \subset \text{Cl} W_i(C, F) \subset X - C$, we have $C \cap \text{Cl} D_i(C) = \emptyset$ for every $i = 1, 2, \ldots$. We also obtain $\bigcup_{i=1}^{\infty} D_i(C) = X - C$ because $\bigcup_{i=1}^{\infty} \mathcal{F}(C) = X - C$.

Quite similarly we can obtain open subsets $D_i(K)$, $i = 1, 2, \ldots$, such that $\text{Ind} \text{Bd} D_i(K) \leq n - 1$, $K \cap \text{Cl} D_i(K) = \emptyset$ and $\bigcup_{i=1}^{\infty} D_i(K) = X - K$. Hence, applying Lemma 3.6, we have a closed set B separating C and K such that

$$B \subset \left(\bigcup_{i=1}^{\infty} \text{Bd} D_i(C) \right) \cup \left(\bigcup_{i=1}^{\infty} \text{Bd} D_i(K) \right) .$$

By the countable sum theorem for Ind, we have $\text{Ind} B \leq n - 1$. Thus Ind $X \leq n$, which completes the proof of Proposition 3.7.

We can now prove a characterization theorem for EM_3.

THEOREM 3.8. The following statements about a space X are equivalent:

1. X is a stratifiable space with a σ-closure-preserving E-net.
2. X is the perfect image of a stratifiable space X_0 with $\dim X_0 \leq 0$.
3. X is the closed image of a stratifiable space X_0 with $\text{ind} X_0 \leq 0$.
4. X is a stratifiable space with a σ-closure-preserving LE-net.

PROOF. The implications (2) \rightarrow (3) and (4) \rightarrow (1) are obvious. To show (1) \rightarrow (2) let X be a member of EM_3 with an E-quartet $\{\mathcal{S}, \mathcal{V}, \mathcal{S}_p, \mathcal{S}_f\}$. By Proposition 3.5 there exists an E-map $f : X \rightarrow M$ onto a metric space M with respect to $\{\mathcal{S}, \mathcal{V}, \mathcal{S}_p, \mathcal{S}_f\}$. By Morita [M], M is the image of a metric space P with $\dim P \leq 0$ under a perfect map g. Now let T be the fiber product of P and X with respect to g and f, that is,

$$T = \{(p, x) \in P \times X : g(p) = f(x)\}$$

with the topology induced from $P \times X$. Let t_p, t_X be the restrictions to T of the projections from $P \times X$ onto P and X, respectively. We thus have the following commutative diagram:

$$\begin{array}{ccc}
X & \xrightarrow{t_X} & T \\
\downarrow f & & \downarrow t_p \\
M & \xleftarrow{g} & P
\end{array}$$

It is a well-known property of fiber products that the perfectness of g implies the perfectness of t_X (see [Pe, Lemma 7.5.13]). T is stratifiable by [C, Theorems 2.3, 2.4]. Hence what should be proved is the zero-dimensionality of T. By Proposition 2.2, P admits an E-quartet $\{\mathcal{S}_p, \mathcal{V}_p, \mathcal{S}_p, \mathcal{S}_f\}$. Now define

$$\mathcal{S}_T = \{t_p^{-1}(F_p) \cap t_X^{-1}(F) : F_p \in \mathcal{S}_p, F \in \mathcal{S}\},$$

$$\mathcal{V}_T = \{t_p^{-1}(V_p) \cap t_X^{-1}(V) : V_p \in \mathcal{V}_p, V \in \mathcal{V}\},$$

$$\mathcal{S}_T = \{t_p^{-1}(S_p) \cap t_X^{-1}(S) : S_p \in \mathcal{S}_p, S \in \mathcal{S}\},$$

and

$$\mathcal{S}_T = \{t_p^{-1}(E_p) : E_p \in \mathcal{S}_p\} \cup \{t_X^{-1}(E) : E \in \mathcal{S}\}.$$
Then it is easy to see that the quartet \(\{ T, T', S, T' \} \) is an \(E \)-quartet of \(T \). Furthermore, the map \(t \) is an \(E \)-map with respect to \(\{ T, T', S, T' \} \) because, in general, \(t_\chi(t_\chi^{-1}(P') \cap \chi^{-1}(X')) = P' \cap g^{-1} \circ f(X') \) for any \(P' \subset P \) and \(X' \subset X \), and because \(f \) is an \(E \)-map with respect to \(\{ T, T', S, T' \} \). Hence, applying Proposition 3.7, we have \(\text{Ind } T \leq 0 \). Thus the implication (1) \(\rightarrow \) (2) has been proved.

To show (3) \(\rightarrow \) (4) let \(X_0 \) be a stratifiable space with \(\text{ind } X_0 \leq 0 \) and let \(f: X_0 \rightarrow X \) be a closed map. Note that every net on \(X_0 \) is an \(E \)-net; hence \(X_0 \) is a member of \(\text{EM}_3 \) by Heath [H]. It now follows from the implication (1) \(\rightarrow \) (2) that \(X_0 \) is the image of a stratifiable space \(X_1 \) with \(\dim X_1 \leq 0 \) under a perfect map \(h \). Since every net on \(X_1 \) is an \(LE \)-net, it follows from Heath [H] again that \(X_1 \) admits a \(\sigma \)-closure-preserving \(LE \)-net. Hence, applying Proposition 2.3 to the closed map \(f \circ h \), we see that \(X \) admits a \(\sigma \)-closure-preserving \(LE \)-net. On the other hand \(X \) is stratifiable by Borges [B, Theorem 3.1]. This completes the proof of Theorem 3.8.

Corollary 3.9. The class \(\text{EM}_3 \) is countably productive, hereditary and preserved under closed maps.

Proof. This is immediate from Theorem 3.8, Proposition 2.6 and the analogous result for \(M_3 \) due to Ceder [C] and Borges [B].

A topological class \(\mathcal{C} \) is called **perfect** (Nagami [N], also see [N2]) if it is countably productive, hereditary, preserved under perfect maps, included in the class of normal spaces, and every member of \(\mathcal{C} \) is the perfect image of a zero-dimensional (in the sense of \(\dim \)) member of \(\mathcal{C} \). Theorem 3.8 and Corollary 3.9 say

Corollary 3.10. The class \(\text{EM}_3 \) is the maximal perfect subclass of \(M_3 \).

Recently Itô [I] has presented a free \(L \)-space, a certain closed image of which is not a free \(L \)-space. But we have

Corollary 3.11. Every closed image of a free \(L \)-space is a member of \(\text{EM}_3 \).

Proof. By Nagami [N4, Theorem 2.10] and Theorem 3.8, every free \(L \)-space is a member of \(\text{EM}_3 \) (it is also easy to directly prove that every free \(L \)-space admits a \(\sigma \)-closure-preserving \(E \)-net). Hence this corollary is immediate from Corollary 3.9.

4. Dimension for \(\text{EM}_3 \)

We begin with the equidimensional \(G_\sigma \)-envelope theorem. To show this, the following lemma is useful.

Lemma 4.1 (Oka [O4, Lemma 3.3]). Let \(X \) be a hereditarily normal space and let \(f: X \rightarrow L \) be a map onto a metric space \(L \). Then for any subset \(Y \subset X \), there exist a \(G_\sigma \)-set \(Z \) of \(X \), a metric space \(M \) and maps \(g: Z \rightarrow M \), \(h: M \rightarrow f(Z) \) such that

- (i) \(Y \subset Z \),
- (ii) \(\dim g(Y) \leq \dim Y \) and
- (iii) \(f \circ Z = h \circ g \).

Theorem 4.2. Let \(X \in \text{EM}_3 \) and let \(Y \) be a subset of \(X \) with \(\dim Y \leq n \). Then there exists a \(G_\sigma \)-set \(G \) of \(X \) such that \(Y \subset G \) and \(\dim G \leq n \).

Proof. Let \(f: X \rightarrow L \) be an \(E \)-map onto a metric space \(L \) with respect to an \(E \)-quartet, say \(\{ T, T', S, T' \} \), on \(X \). By the above lemma there exist a \(G_\sigma \)-set \(Z \) of \(X \), a
metric space M and maps $g: Z \to M$, $h: M \to f(Z)$ satisfying (i), (ii), (iii) above. Since $\dim g(Y) \leq n$ and M is metrizable, we can find a G_δ-set H of M such that $g(Y) \subseteq H$ and $\dim H \leq n$ (see, for example, [E, 4.1.19]). Define $G = g^{-1}(H)$. Then G is a G_δ-set of Z, and hence of X. To show $\dim G \leq n$, note that $g | G$ is an E-map with respect to $\{\mathcal{G}, \mathcal{V}, \mathcal{E}, \mathcal{S}\}$ because $f | G$ is so and because $f | G = h \circ g | G$ by (iii). Hence by Proposition 3.7 we have $\text{Ind} G \leq \text{Ind} H$. Consequently
\[
\dim G \leq \text{Ind} G \leq \text{Ind} H = \dim H \leq n,
\]
as required. This completes the proof.

The following theorem occupies the central position in dimension theory of EM_3. The key argument of the proof has already appeared in the proof of Theorem 3.8.

Theorem 4.3. The following statements about a space X are equivalent:

1. $X \in EM_3$ and $\dim X \leq n$.
2. X is the image of a stratifiable space X_0 with $\dim X_0 \leq 0$ under a perfect map of order not greater than $n + 1$.
3. X is a stratifiable space which is the union of G_δ-sets X_i, $1 \leq i \leq n + 1$, with $\dim X_i \leq 0$.
4. $X \in EM_3$ and $\text{Ind} X \leq n$.

Proof. (1) \rightarrow (2). Let X be a member of EM_3 such that $\dim X \leq n$. Let $\{\mathcal{G}, \mathcal{V}, \mathcal{E}, \mathcal{S}\}$ be an E-quartet of X. By Proposition 3.5 there exist a metric space L and an E-map $f: X \to L$ with respect to the E-quartet. By Pasynkov's factorization theorem [P, Theorem 29], there exist a metric space M and maps $g: X \to M$, $h: M \to L$ such that $\dim M \leq n$ and $f = h \circ g$. It then follows from Morita [M] that M is the image of a metric space P with $\dim P \leq 0$ under a perfect map r such that $\text{ord} r \leq n + 1$. Let T be the fiber product of P and X with respect to r and g, and let t_P, t_X be the restrictions to T of the projections from $P \times X$ onto P and X, respectively. We thus obtain the following commutative diagram:

\[
\begin{array}{cccc}
X & \xleftarrow{t_X} & T \\
\downarrow f & & \downarrow t_P \\
L & \xleftarrow{h} & M & \xleftarrow{r} & P
\end{array}
\]

It is obvious that t_X is a perfect map of order not greater than $n + 1$ and that T is a stratifiable space. Note that g is an E-map with respect to $\{\mathcal{G}, \mathcal{V}, \mathcal{E}, \mathcal{S}\}$ because f is so and $f = h \circ g$. Now, as in the proof of Theorem 3.8, t_P is also an E-map with respect to a certain E-quartet of T, and hence $\dim T \leq 0$ by Proposition 3.7.

(2) \rightarrow (3). Let $t: X_0 \to X$ be a perfect map from a stratifiable space X_0 with $\dim X_0 \leq 0$ onto a space X such that $\text{ord} t \leq n + 1$. Put $Y_i = \{x \in X: |t^{-1}(x)| = i\}$, $1 \leq i \leq n + 1$. It then follows from Nagami [N2, Lemma 4] that $\dim Y_i \leq 0$ for each $i = 1, 2, \ldots, n + 1$. Since X is a member of EM_3 by Theorem 3.8, we may apply Theorem 4.2 to obtain G_δ-sets X_i, $1 \leq i \leq n + 1$, such that $\dim X_i \leq 0$ and $Y_i \subseteq X_i$.

The implication (4) \rightarrow (1) is trivial.
Finally the implication (3) \(\rightarrow\) (4) is assured by the following theorem (but the fact \(\text{Ind } X \leq n\) only is direct from (3) as a consequence general for hereditarily normal spaces).

Theorem 4.4. Let \(X\) be a normal \(\sigma\)-space expressed as the finite union of \(G_\delta\)-sets \(X_i\), \(1 \leq i \leq k\), such that \(\dim X_i \leq 0\). Then \(X\) admits a \(\sigma\)-closure-preserving \(LE\)-net.

Proof. The proof is by induction on \(k\). When \(k = 1\), the theorem is trivial. Now suppose that the theorem is valid when \(k = m - 1\), and consider the case \(k = m\). Put \(Y_m = X - X_m\). Then by induction hypothesis and Lemma 2.5, the normal \(\sigma\)-space \(Y_m\) admits a \(\sigma\)-closure-preserving \(LE\)-net, say \(\mathcal{D}\), consisting of closed sets of \(Y_m\). Write \(Y_m = \bigcup_{i=1}^{\infty} C_i\) with closed sets \(C_i\) such that \(C_i \subset C_{i+1}\), and put \(\mathcal{D}_i = \mathcal{D} | C_i\). Let \(\mathcal{T}\) be a \(\sigma\)-locally finite net of \(X\). Now consider the \(\sigma\)-closure-preserving collection \(\bigcup_{i=1}^{\infty} \mathcal{D}_i \cup \mathcal{T}\) of \(X\). To show that the collection is an \(LE\)-net on \(X\), let \(C, K\) be disjoint closed sets of \(X\). Since \(X\) is hereditarily normal and \(\text{Ind } X_m \leq 0\), there exists a closed set \(S\) separating \(C\) and \(K\) such that \(S \cap X_m = \emptyset\). Represent \(X\) as the disjoint union \(V \cup S \cup W\), where \(V\) and \(W\) are open sets of \(X\) including \(C\) and \(K\) respectively. Write \(V = \bigcup_{i=1}^{\infty} V_i\) with open sets \(V_i\) such that \(V_i \subset V_{i+1}\) for every \(i\). For each \(i\) take a subcollection \(\mathcal{S}_i\) of \(\mathcal{S}\) such that

\[
(W \cup S) \cap C_i \subset \mathcal{S}_i^* \subset C_i - (V_i \cup C)
\]

and \(\mathcal{S}_i^*\) is a closed set of \(C_i\). Now put

\[
B = W \cup \left(\bigcup_{i=1}^{\infty} \mathcal{S}_i^* \right).
\]

It is easy to see that \(B\) is a closed set of \(X\) including \(K\) and not meeting \(C\). Since \(W\) is the union of some members of \(\mathcal{T}\), \(B\) is the union of some members of \(\bigcup_{i=1}^{\infty} \mathcal{S}_i \cup \mathcal{T}\). Thus \(\bigcup_{i=1}^{\infty} \mathcal{S}_i \cup \mathcal{T}\) is a \(\sigma\)-closure-preserving \(LE\)-net on \(X\). This completes the proof of Theorem 4.4 and, therefore, of Theorem 4.3.

Remark. Slightly modifying the above proof, we can weaken the condition “\(X_i\) is \(G_\delta\)” in Theorem 4.4 to “\(X_i\) is either \(G_\delta\) or \(F_\sigma\).”

As a trivial version of Theorem 4.4, we have the following result which tells us that the dimension theory does not work well in the remainder \(M_3 - EM_3\).

Corollary 4.5. Let \(X\) be a normal \(\sigma\)-space not admitting a \(\sigma\)-closure-preserving \(LE\)-net. Then either

1. \(X\) cannot be decomposed into finitely many zero-dimensional (in the sense of \(\dim\)) subsets, or
2. there exists a zero-dimensional (in the sense of \(\dim\)) subset of \(X\) not admitting an equidimensional \(G_\delta\)-envelope.

As an immediate consequence of Theorem 4.3, we have

Corollary 4.6. Let \(X\) be a stratifiable space with \(\text{ind } X \leq 0\). Then \(\dim X = \text{Ind } X\).

Remark. This result, however, is generalized to paracompact \(\sigma\)-spaces in my recent paper [Oka].
We conclude this section with the following result, an immediate consequence of Corollary 3.11 and Theorem 4.3.

Corollary 4.7. Let X be the closed image of a free L-space. Then $\dim X = \text{Ind } X$.

5. Other spaces admitting σ-closure-preserving E-nets.

Let C be a topological property. A space is called *peripherally* C if every point in the space admits an open neighborhood base, the boundary of each member of which is C.

Theorem 5.1. (1) A peripherally σ-discrete, paracompact σ-space admits a σ-closure-preserving E-net.

(2) A peripherally σ-compact, stratifiable space admits a σ-closure-preserving E-net.

Proof. We shall prove (1) and (2) simultaneously. Let S be a σ-locally finite net (resp. a σ-closure-preserving quasi-base) of X consisting of closed sets. To show that S itself is an E-net on X let x be a point of X and V an open neighborhood of x. Take an open set U such that $x \in U \subseteq \overline{U} \subseteq V$ and $\text{Bd } U$ is σ-discrete (resp. σ-compact). Write $U = \bigcup_{i=1}^{\infty} U_i$ with open sets U_i such that $\overline{U}_i \subseteq U_{i+1}$ for every i. Write $\text{Bd } U = \bigcup_{i=1}^{\infty} C_i$ with discrete (resp. compact) closed sets C_i, $i = 1, 2, \ldots$. There exists, for each i, a discrete (resp. finite) subcollection S_i of S such that $C_i \subseteq S_i \subseteq X - (\overline{U_i} \cup \{x\})$. Then $\bigcup_{i=1}^{\infty} S_i \cup (X - \overline{U})$ is a closed set of X including $X - V$, not meeting $\{x\}$ and expressed as a union of members of S. Thus S is an E-net of X, which completes the proof.

Now we have the following generalization of Corollary 4.6.

Corollary 5.2. Let X be a peripherally σ-compact (or peripherally σ-discrete) stratifiable space. Then $\dim X = \text{Ind } X$.

We next verify a countable sum theorem for σ-closure-preserving LE-nets.

Theorem 5.3. Let X be a normal space expressed as the countable union of closed sets X_i, $i = 1, 2, \ldots$, each of which admits a σ-closure-preserving LE-net. Then X has a σ-closure-preserving LE-net.

Proof. Note that X is perfectly normal because each X_i is. Let S_i be a σ-closure-preserving LE-net of X_i. It is clear that $\bigcup_{i=1}^{\infty} S_i$ is a σ-closure-preserving in X. To show that $\bigcup_{i=1}^{\infty} S_i$ is an LE-net, let C and K be disjoint closed sets of X. Write $X - C = \bigcup_{i=1}^{\infty} V_i$ with open sets V_i such that $\overline{V}_i \subseteq V_{i+1}$. For each i let S_i be a subcollection of S_i such that S_i^* is a closed set of X_i and $C \cap X_i \subseteq \overline{S_i^*} \subseteq X_i - (K \cup \overline{V}_i)$. It is then obvious that $\bigcup_{i=1}^{\infty} S_i^*$ is a closed set of X and $C \subseteq \bigcup_{i=1}^{\infty} S_i^* \subseteq X - K$. This completes the proof.

The following result is immediate from Theorem 5.3, Proposition 2.2 and Ceder [C, Theorem 8.3].

Corollary 5.4. A chunk complex (and hence a CW-complex) is a member of EM_3.

We list several unsolved problems below.
Problem 5.5. (1) Does every stratifiable space admit a σ-closure-preserving E-net? By virtue of Theorem 3.8, this is equivalent to:

(2) (Nagami [N₁, Problem 4]) Is every stratifiable space a perfect image of a zero-dimensional (in the sense of dim) stratifiable space?

The author also does not know whether the inclusion \(EM \subset M \) (or \(M \subset EM \)) holds or not.

Problem 5.6. Let \(X \) be a paracompact σ-space admitting a σ-closure-preserving E-net. Then:

(1) Does the equality \(\text{dim } X = \text{Ind } X \) hold?

(2) Is \(X \) a perfect image of a zero-dimensional (in the sense of dim) paracompact σ-space? More weakly:

(3) Does \(X \) admit a σ-closure-preserving LE-net?

In the specific case of \(\text{ind } X \leq 0 \), (1) admits an affirmative answer by the inequality \(\text{Ind } X \leq \text{dim } X + \text{ind } X \) for every nonempty paracompact σ-space \(X \) [Oₙ]; (2) is also affirmative, that is, a paracompact σ-space of \(\text{ind } X \leq 0 \) is the perfect image of a paracompact σ-space of \(\text{dim } X \leq 0 \).

To outline the proof, let \(X \) be a nonempty paracompact σ-space with \(\text{ind } X = 0 \). Let \(\mathcal{G} = \bigcup_{i=1}^{\infty} \mathcal{G}_i \) and \(\mathcal{V} = \bigcup_{i=1}^{\infty} \mathcal{V}_i \) be as in Definition 3.3. Let \(f: X \to M \) be a one-to-one map onto a metric space \(M \) such that \(f(\mathcal{V}_i^*) \) is open and \(f(\mathcal{G}_i^*) \) is closed for every \(i \). In [Oₙ, Lemma 5] it is proved that, in general, \(\text{Ind } X \leq \text{Ind } M + \text{ind } X \) for any such map \(f: X \to M \). The metric space \(M \) is the image of a metric space \(L \) with \(\text{dim } L = 0 \) under a perfect map \(g \). Let \(T \) be the fiber product of \(L \) and \(X \) with respect to \(g \) and \(f \). Let \(t_L, t_X \) be the restrictions to \(T \) of the projections from \(L \times X \) onto \(L \) and \(X \), respectively. Then, since the map \(t_L \) is of the “same type” as \(f \), we have \(\text{Ind } T \leq \text{Ind } L + \text{ind } T = \text{ind } T \). But, in the present case, \(\text{ind } T \leq \text{ind } (L \times X) = 0 \); hence \(\text{Ind } T = 0 \). It is clear that \(T \) is a paracompact σ-space and \(t_X \) is a perfect map. This completes the proof.

Problem 5.7. Let \(X \) be a stratifiable space expressed as the union of countably many metrizable \((G_δ)\) subsets. Does the equality \(\text{dim } X = \text{Ind } X \) hold? More strongly, does \(X \) admit a σ-closure-preserving E-net? (A space of this type is a natural generalization of a Lašnev space in view of Lašnev’s well-known decomposition theorem [La].)

Bibliography

DIMENSION OF STRATIFIABLE SPACES

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, ROKKAKU-BASHI, KANAGAWA-KU, YOKOHAMA, 221, JAPAN

Current address: Faculty of Education, Kagawa University, Saiwai-cho, Takamatsu, 760, Japan