Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators
HTML articles powered by AMS MathViewer
- by Lawrence C. Evans PDF
- Trans. Amer. Math. Soc. 275 (1983), 245-255 Request permission
Abstract:
We prove under appropriate hypotheses that the Hamilton-JacobiBellman dynamic programming equation with uniformly elliptic operators, ${\max _{1 \leqslant k \leqslant m}}\{{L^k}u - {f^k}\} = 0$, has a classical solution $u \in {C^{2,\beta }}$, for some (small) Hölder exponent $\beta > 0$.References
- S. A. Belbas, Weak solutions of the Hamilton-Jacobi-Bellman equation, Systems Control Lett. 1 (1981/82), no. 3, 168–172. MR 670060, DOI 10.1016/S0167-6911(81)80031-X
- A. Bensoussan and J.-L. Lions, Applications des inéquations variationnelles en contrôle stochastique, Méthodes Mathématiques de l’Informatique, No. 6, Dunod, Paris, 1978 (French). MR 0513618
- H. Brézis and L. C. Evans, A variational inequality approach to the Bellman-Dirichlet equation for two elliptic operators, Arch. Rational Mech. Anal. 71 (1979), no. 1, 1–13. MR 522704, DOI 10.1007/BF00250667
- Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363. MR 649348, DOI 10.1002/cpa.3160350303
- Lawrence C. Evans and Avner Friedman, Optimal stochastic switching and the Dirichlet problem for the Bellman equation, Trans. Amer. Math. Soc. 253 (1979), 365–389. MR 536953, DOI 10.1090/S0002-9947-1979-0536953-4
- Lawrence C. Evans and Pierre-Louis Lions, Résolution des équations de Hamilton-Jacobi-Bellman pour des opérateurs uniformément elliptiques, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 22, A1049–A1052 (French, with English summary). MR 582494
- Wendell H. Fleming and Raymond W. Rishel, Deterministic and stochastic optimal control, Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975. MR 0454768
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
- N. V. Krylov, Controlled diffusion processes, Applications of Mathematics, vol. 14, Springer-Verlag, New York-Berlin, 1980. Translated from the Russian by A. B. Aries. MR 601776 —, Control of a solution of a stochastic integral equation, Theor. Probab. Appl. 17 (1972), 114-130. N. V. Krylov and M. V. Safonov, An estimate of the probability that a diffusion hits a set of positive measure, Soviet Math. 20 (1979), 253-256.
- Thomas G. Kurtz, Representations of Markov processes as multiparameter time changes, Ann. Probab. 8 (1980), no. 4, 682–715. MR 577310
- Harold J. Kushner, Stochastic stability and control, Mathematics in Science and Engineering, Vol. 33, Academic Press, New York-London, 1967. MR 0216894
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- Suzanne Lenhart, Bellman equation for optimal stopping time problems, Indiana Univ. Math. J. 32 (1983), no. 3, 363–375. MR 697642, DOI 10.1512/iumj.1983.32.32026
- P.-L. Lions, Résolution analytique des problèmes de Bellman-Dirichlet, Acta Math. 146 (1981), no. 3-4, 151–166 (French). MR 611381, DOI 10.1007/BF02392461 —, Thèse d’État, Paris VI, 1979.
- Pierre-Louis Lions and José-Luis Menaldi, Optimal control of stochastic integrals and Hamilton-Jacobi-Bellman equations. I, II, SIAM J. Control Optim. 20 (1982), no. 1, 58–81, 82–95. MR 642179, DOI 10.1137/0320006
- Makiko Nisio, Remarks on stochastic optimal controls, Japan. J. Math. (N.S.) 1 (1975/76), no. 1, 159–183. MR 446697, DOI 10.4099/math1924.1.159
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 245-255
- MSC: Primary 35J60; Secondary 49C20, 93E20
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678347-8
- MathSciNet review: 678347