Monotone decompositions of $\theta$-continua
HTML articles powered by AMS MathViewer
- by E. E. Grace PDF
- Trans. Amer. Math. Soc. 275 (1983), 287-295 Request permission
Abstract:
A $\theta$-continuum (${\theta _n}$-continuum) is a compact, connected, metric space that is not separated into infinitely many (more than $n$) components by any subcontinuum. The following results are among those proved. The first generalizes earlier joint work with E. J. Vought for ${\theta _n}$-continua, and the second generalizes earlier work by Vought for ${\theta _1}$-continua. A $\theta$-continuum $X$ admits a monotone, upper semicontinuous decomposition $\mathcal {D}$ such that the elements of $\mathcal {D}$ have void interiors and the quotient space $X/\mathcal {D}$ is a finite graph, if and only if, for each nowhere dense subcontinuum $H$ of $X$, the continuum $T(H) = \{x \in X|$ if $K$ is a subcontinuum of $X$ and $x$ is in the interior of $K$, then $K \cap H \ne \emptyset \}$ is nowhere dense. Also, if $X$ satisfies this condition, then $X$ is in fact a ${\theta _n}$-continuum, for some natural number $n$, and, for each natural number $m$, $X$ is a ${\theta _m}$-continuum, if and only if $X/\mathcal {D}$ is a ${\theta _m}$-continuum.References
- R. H. Bing, Some characterizations of arcs and simple closed curves, Amer. J. Math. 70 (1948), 497–506. MR 25722, DOI 10.2307/2372193
- H. S. Davis, A note on connectedness im kleinen, Proc. Amer. Math. Soc. 19 (1968), 1237–1241. MR 254814, DOI 10.1090/S0002-9939-1968-0254814-3
- H. S. Davis, D. P. Stadtlander, and P. M. Swingle, Properties of the set functions $T^{n}$, Portugal. Math. 21 (1962), 113–133. MR 142108
- R. W. FitzGerald, Connected sets with a finite disconnection property, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 139–173. MR 0365478 Jo Ford, On $n$-ods, preprint.
- E. E. Grace, A bibliography on aposyndesis, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 493–513. MR 619076
- E. E. Grace, Aposyndesis and weak cutting, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 71–82. MR 619031
- E. E. Grace and Eldon J. Vought, Monotone decompositions of $\theta _{n}$-continua, Trans. Amer. Math. Soc. 263 (1981), no. 1, 261–270. MR 590423, DOI 10.1090/S0002-9947-1981-0590423-5
- F. Burton Jones, Concerning aposyndetic and non-aposyndetic continua, Bull. Amer. Math. Soc. 58 (1952), 137–151. MR 48797, DOI 10.1090/S0002-9904-1952-09582-3
- Eldon J. Vought, Monotone decompositions of continua not separated by any subcontinua, Trans. Amer. Math. Soc. 192 (1974), 67–78. MR 341438, DOI 10.1090/S0002-9947-1974-0341438-X
- Eldon J. Vought, Structure of $\theta$- and $\theta _{n}$-continua, Topology Conference, 1979 (Greensboro, N.C., 1979) Guilford College, Greensboro, N.C., 1980, pp. 121–127. MR 665936
- L. F. McAuley and M. M. Rao (eds.), General topology and modern analysis, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. In honor of the retirement of Professor F. Burton Jones. MR 619023
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 287-295
- MSC: Primary 54F20; Secondary 54B15, 54C60, 54E45, 54F65
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678350-8
- MathSciNet review: 678350