Linking numbers and the elementary ideals of links
HTML articles powered by AMS MathViewer
- by Lorenzo Traldi
- Trans. Amer. Math. Soc. 275 (1983), 309-318
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678352-1
- PDF | Request permission
Abstract:
Let $L = {K_1} \cup \cdots \cup {K_\mu } \subseteq {S^3}$ be a tame link of $\mu \geqslant 2$ components, and $H$ the abelianization of $G = {\pi _1}({S^3} - L)$. Let $\mathcal {L} = ({\mathcal {L}_{ij}})$ be the $\mu \times \mu$ matrix with entries in $\mathbf {Z}H$ given by $\mathcal {L}{_{ii}} = \sum \nolimits _{k \ne i} {l({K_i},{K_k}) \cdot ({t_k} - 1)}$ and for $i \ne j {\mathcal {L}_{ij}} = l({K_i},{K_j}) \cdot (1 - {t_i})$. Then if $0 < k < \mu$ \[ \sum \limits _{i = 0}^{k - 1} {{E_{\mu - k + i}}(L) \cdot {{(IH)}^{2i}} + {{(IH)}^{2k}} = \sum \limits _{i = 0}^{k - 1} {{E_{\mu - k + i}}(\mathcal {L}) \cdot {{(IH)}^{2i}} + {{(IH)}^{2k}}} } \] Various consequences of this equality are derived, including its application to the reduced elementary ideals. These results are used to give several different characterizations of links in which all the linking numbers are zero.References
- K. T. Chen, Commutator calculus and link invariants, Proc. Amer. Math. Soc. 3 (1952), 44–55. MR 46361, DOI 10.1090/S0002-9939-1952-0046361-7
- R. H. Crowell, The derived module of a homomorphism, Advances in Math. 6 (1971), 210–238 (1971). MR 276308, DOI 10.1016/0001-8708(71)90016-8
- Fujitsugu Hosokawa, On $\nabla$-polynomials of links, Osaka Math. J. 10 (1958), 273–282. MR 102820
- Mark E. Kidwell, On the Alexander polynomials of certain three-component links, Proc. Amer. Math. Soc. 71 (1978), no. 2, 351–354. MR 482737, DOI 10.1090/S0002-9939-1978-0482737-X
- D. G. Northcott, Finite free resolutions, Cambridge Tracts in Mathematics, No. 71, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0460383
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Guillermo Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57–89. MR 52104, DOI 10.2307/1969726
- Lorenzo Traldi, A generalization of Torres’ second relation, Trans. Amer. Math. Soc. 269 (1982), no. 2, 593–610. MR 637712, DOI 10.1090/S0002-9947-1982-0637712-4
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 309-318
- MSC: Primary 57M05; Secondary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678352-1
- MathSciNet review: 678352