On the triangulation of stratified sets and singular varieties
HTML articles powered by AMS MathViewer
- by F. E. A. Johnson PDF
- Trans. Amer. Math. Soc. 275 (1983), 333-343 Request permission
Abstract:
We show that every compact stratified set in the sense of Thom can be triangulated as a simplicial complex. The proof uses that author’s description of a stratified set as the geometric realisation of a certain type of diagram of smooth fibre bundles and smooth imbeddings, and the triangulability of smooth fibre bundles. As a consequence, we obtain proofs of the classical triangulation theorems for analytic and subanalytic sets, and a correct proof of Yang’s theorem that the orbit space of a smooth compact transformation group is triangulable.References
- A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491. MR 387495, DOI 10.1007/BF02566134
- A. Borel and J.-P. Serre, Cohomologie d’immeubles et de groupes $S$-arithmétiques, Topology 15 (1976), no. 3, 211–232 (French). MR 447474, DOI 10.1016/0040-9383(76)90037-9
- Jean Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227–380 (French). MR 140120, DOI 10.24033/bsmf.1567 A. Douady and L. Herault, Appendix to [1].
- Heisuke Hironaka, Triangulations of algebraic sets, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 165–185. MR 0374131
- Sören Illman, Smooth equivariant triangulations of $G$-manifolds for $G$ a finite group, Math. Ann. 233 (1978), no. 3, 199–220. MR 500993, DOI 10.1007/BF01405351 F. E. A. Johnson, Triangulation of stratified sets, Thesis, University of Liverpool, 1972.
- F. E. A. Johnson, A triangulation criterion, Mathematika 25 (1978), no. 1, 110–114. MR 500988, DOI 10.1112/S0025579300009311
- F. E. A. Johnson, On the triangulation of smooth fibre bundles, Fund. Math. 118 (1983), no. 1, 39–58. MR 736287, DOI 10.4064/fm-118-1-39-58
- F. E. A. Johnson, On the presentation of stratified sets and singular varieties, Mathematika 29 (1982), no. 1, 135–170. MR 673514, DOI 10.1112/S0025579300012249
- B. O. Koopman and A. B. Brown, On the covering of analytic loci by complexes, Trans. Amer. Math. Soc. 34 (1932), no. 2, 231–251. MR 1501636, DOI 10.1090/S0002-9947-1932-1501636-9
- S. Lefschetz and J. H. C. Whitehead, On analytical complexes, Trans. Amer. Math. Soc. 35 (1933), no. 2, 510–517. MR 1501698, DOI 10.1090/S0002-9947-1933-1501698-X
- S. Lojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 449–474. MR 173265
- Bernard Teissier, Théorèmes de finitude en géométrie analytique (d’après Heisuke Hironaka), Séminaire Bourbaki, 26e année (1973/1974), Exp. No. 451, Lecture Notes in Math., Vol. 431, Springer, Berlin, 1975, pp. 295–317 (French). MR 0477119
- R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284 (French). MR 239613, DOI 10.1090/S0002-9904-1969-12138-5 B. L. Van der Waerden, Topolgische Begründung des Kalküls der abzählen Geometrie, Math. Ann. 102 (1929), 360.
- J. H. C. Whitehead, On $C^1$-complexes, Ann. of Math. (2) 41 (1940), 809–824. MR 2545, DOI 10.2307/1968861
- Hassler Whitney, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496–549. MR 192520, DOI 10.2307/1970400
- C. T. Yang, The triangulability of the orbit space of a differentiable transformation group, Bull. Amer. Math. Soc. 69 (1963), 405–408. MR 146291, DOI 10.1090/S0002-9904-1963-10947-7
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 333-343
- MSC: Primary 58A35; Secondary 32B25, 54E60, 57R05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678354-5
- MathSciNet review: 678354