Weak-star convergence in the dual of the continuous functions on the $n$-cube, $1\leq n\leq \infty$
HTML articles powered by AMS MathViewer
- by Richard B. Darst and Zorabi Honargohar PDF
- Trans. Amer. Math. Soc. 275 (1983), 357-372 Request permission
Abstract:
Let $n$ be a positive integer and let $J = \times _{j = 1}^n{[0,1]_j}$ denote the $n$-cube. Let $\mathbf {C} = \mathbf {C}(J)$ denote the (sup norm) space of continuous (real-valued) functions defined on $J$, and let $\mathfrak {M}$ denote the (variation norm) space of (real-valued) signed Borel measures defined on the Borel subsets of $J$. Let $\left \langle {{\mu _l}} \right \rangle$ be a sequence of elements of $\mathfrak {M}$. Necessary and sufficient conditions are given in order that ${\text {li}}{{\text {m}}_l}\int f d{\mu _l}$ exists for every $f \in \mathbf {C}$. After considering a finite dimensional case, the infinite dimensional case is entertained.References
-
T. M. Apostol, Mathematical analysis, Addison-Welsey, Reading, Mass., 1957.
- George Bachman and Lawrence Narici, Functional analysis, Academic Press, New York-London, 1966. MR 0217549
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- Göran Högnäs, Characterization of weak convergence of signed measures on $[0, 1]$, Math. Scand. 41 (1977), no. 1, 175–184. MR 482909, DOI 10.7146/math.scand.a-11711
- T. H. Hildebrandt, Introduction to the theory of integration, Pure and Applied Mathematics, Vol. XIII, Academic Press, New York-London, 1963. MR 0154957
- James R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. MR 0464128 I. P. Natanson, Theory of functions of a real variable, Vol. I, 3rd printing, Ungar, New York, 1964.
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- Walter Rudin, Principles of mathematical analysis, 2nd ed., McGraw-Hill Book Co., New York, 1964. MR 0166310
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 357-372
- MSC: Primary 46E27; Secondary 26B30, 28A33, 60B10
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678356-9
- MathSciNet review: 678356