Nonlinear mappings that are globally equivalent to a projection
HTML articles powered by AMS MathViewer
 by Roy Plastock PDF
 Trans. Amer. Math. Soc. 275 (1983), 373380 Request permission
Abstract:
The Rank theorem gives conditions for a nonlinear Fredholm map of positive index to be locally equivalent to a projection. In this paper we wish to find conditions which guarantee that such a map is globally equivalent to a projection. The problem is approached through the method of line lifting. This requires the existence of a locally Lipschitz right inverse, ${F^ \downarrow }(x)$, to the derivative map ${F^\prime }(x)$ and a global solution to the differential equation ${P^\prime }(t) = {F^ \downarrow }(P(t))(y  {y_0})$. Both these problems are solved and the generalized HadamardLevy criterion \[ \int _0^\infty {\inf \limits _{x < s} \left ({1/{F^ \downarrow }(x)} \right ) ds = \infty } \] is shown to be sufficient for $F$ to be globally equivalent to a projection map (Theorem 3.2). The relation to fiber bundle mappings is explored in §4.References

S. Banach and S. Mazur, Über mehrdeutige stetige abbildungen, Studia Math. 5 (1934), 174178.
 M. S. Berger and R. A. Plastock, On the singularities of nonlinear Fredholm operators of positive index, Proc. Amer. Math. Soc. 79 (1980), no. 2, 217–221. MR 565342, DOI 10.1090/S00029939198005653425
 Felix E. Browder, Covering spaces, fibre spaces, and local homeomorphisms, Duke Math. J. 21 (1954), 329–336. MR 62431
 J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New YorkLondon, 1960. MR 0120319 C. Earle and J. Eells, Foliations andfibrations, J. Differential Geom. 7 (1967), 6169.
 Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71–84 (French). MR 1504541
 P. Lévy, Sur les fonctions de lignes implicites, Bull. Soc. Math. France 48 (1920), 13–27 (French). MR 1504790
 J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New YorkLondon, 1970. MR 0273810
 Richard S. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc. 92 (1959), 125–141. MR 116352, DOI 10.1090/S00029947195901163527
 Richard S. Palais, LusternikSchnirelman theory on Banach manifolds, Topology 5 (1966), 115–132. MR 259955, DOI 10.1016/00409383(66)900139
 R. A. Plastock, Nonlinear Fredholm maps of index zero and their singularities, Proc. Amer. Math. Soc. 68 (1978), no. 3, 317–322. MR 464283, DOI 10.1090/S00029939197804642832
 Roy Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974), 169–183. MR 356122, DOI 10.1090/S00029947197403561226
 Marius Rădulescu and Sorin Radulescu, Global inversion theorems and applications to differential equations, Nonlinear Anal. 4 (1980), no. 5, 951–965. MR 586858, DOI 10.1016/0362546X(80)900073
 Werner C. Rheinboldt, Local mapping relations and global implicit function theorems, Trans. Amer. Math. Soc. 138 (1969), 183–198. MR 240644, DOI 10.1090/S00029947196902406440
 S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250
 Edwin H. Spanier, Algebraic topology, McGrawHill Book Co., New YorkToronto, Ont.London, 1966. MR 0210112 Yu. G. Borisovich, U. G. Zuyagin, and Yu. Sapronov, Nonlinear Fredholm maps and the LeraySchauder theory, Russian Math. Surveys 32 (4) (1977), 154.
 Werner C. Rheinboldt, Solution fields of nonlinear equations and continuation methods, SIAM J. Numer. Anal. 17 (1980), no. 2, 221–237. MR 567270, DOI 10.1137/0717020
 Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101
Additional Information
 © Copyright 1983 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 275 (1983), 373380
 MSC: Primary 58C25; Secondary 47H17
 DOI: https://doi.org/10.1090/S00029947198306783570
 MathSciNet review: 678357