Nonlinear mappings that are globally equivalent to a projection
HTML articles powered by AMS MathViewer
- by Roy Plastock
- Trans. Amer. Math. Soc. 275 (1983), 373-380
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678357-0
- PDF | Request permission
Abstract:
The Rank theorem gives conditions for a nonlinear Fredholm map of positive index to be locally equivalent to a projection. In this paper we wish to find conditions which guarantee that such a map is globally equivalent to a projection. The problem is approached through the method of line lifting. This requires the existence of a locally Lipschitz right inverse, ${F^ \downarrow }(x)$, to the derivative map ${F^\prime }(x)$ and a global solution to the differential equation ${P^\prime }(t) = {F^ \downarrow }(P(t))(y - {y_0})$. Both these problems are solved and the generalized Hadamard-Levy criterion \[ \int _0^\infty {\inf \limits _{|x| < s} \left ({1/|{F^ \downarrow }(x)|} \right ) ds = \infty } \] is shown to be sufficient for $F$ to be globally equivalent to a projection map (Theorem 3.2). The relation to fiber bundle mappings is explored in §4.References
- S. Banach and S. Mazur, Über mehrdeutige stetige abbildungen, Studia Math. 5 (1934), 174-178.
- M. S. Berger and R. A. Plastock, On the singularities of nonlinear Fredholm operators of positive index, Proc. Amer. Math. Soc. 79 (1980), no. 2, 217–221. MR 565342, DOI 10.1090/S0002-9939-1980-0565342-5
- Felix E. Browder, Covering spaces, fibre spaces, and local homeomorphisms, Duke Math. J. 21 (1954), 329–336. MR 62431
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319 C. Earle and J. Eells, Foliations andfibrations, J. Differential Geom. 7 (1967), 61-69.
- Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71–84 (French). MR 1504541
- P. Lévy, Sur les fonctions de lignes implicites, Bull. Soc. Math. France 48 (1920), 13–27 (French). MR 1504790
- J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York-London, 1970. MR 0273810
- Richard S. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc. 92 (1959), 125–141. MR 116352, DOI 10.1090/S0002-9947-1959-0116352-7
- Richard S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115–132. MR 259955, DOI 10.1016/0040-9383(66)90013-9
- R. A. Plastock, Nonlinear Fredholm maps of index zero and their singularities, Proc. Amer. Math. Soc. 68 (1978), no. 3, 317–322. MR 464283, DOI 10.1090/S0002-9939-1978-0464283-2
- Roy Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974), 169–183. MR 356122, DOI 10.1090/S0002-9947-1974-0356122-6
- Marius Rădulescu and Sorin Radulescu, Global inversion theorems and applications to differential equations, Nonlinear Anal. 4 (1980), no. 5, 951–965. MR 586858, DOI 10.1016/0362-546X(80)90007-3
- Werner C. Rheinboldt, Local mapping relations and global implicit function theorems, Trans. Amer. Math. Soc. 138 (1969), 183–198. MR 240644, DOI 10.1090/S0002-9947-1969-0240644-0
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 Yu. G. Borisovich, U. G. Zuyagin, and Yu. Sapronov, Non-linear Fredholm maps and the Leray-Schauder theory, Russian Math. Surveys 32 (4) (1977), 1-54.
- Werner C. Rheinboldt, Solution fields of nonlinear equations and continuation methods, SIAM J. Numer. Anal. 17 (1980), no. 2, 221–237. MR 567270, DOI 10.1137/0717020
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 373-380
- MSC: Primary 58C25; Secondary 47H17
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678357-0
- MathSciNet review: 678357