On generalized Peano derivatives
HTML articles powered by AMS MathViewer
- by Cheng Ming Lee PDF
- Trans. Amer. Math. Soc. 275 (1983), 381-396 Request permission
Abstract:
A function $F$ is said to have a generalized $n$th Peano derivative at $x$ if $F$ is continuous in a neighborhood of $x$ and if there exists a positive integer $k$ such that a $k$th primitive of $F$ in the neighborhood has the $(k + n)$th Peano derivative at $x$; and in this case this $(k + n)$th Peano derivative at $x$ is proved to be independent of the integer $k$ and the $k$th primitives, and is called the generalized $n$th Peano derivative of $F$ at $x$ which is denoted as ${F_{[n]}}(x)$. If ${F_{[n]}}(x)$ exists and is finite for all $x$ in an interval, then it is shown that ${F_{[n]}}$ shares many interesting properties that are known for the ordinary Peano derivatives. Using the generalized Peano derivatives, a notion called absolute generalized Peano derivative is studied. It is proved that on a compact interval, the absolute generalized Peano derivatives are just the generalized Peano derivatives. In particular, Laczkovich’s absolute (ordinary) Peano derivatives are generalized Peano derivatives.References
- Bruce S. Babcock, On properties of the approximate Peano derivatives, Trans. Amer. Math. Soc. 212 (1975), 279–294. MR 414803, DOI 10.1090/S0002-9947-1975-0414803-0
- J. A. Bergin, A new characterization of Cesàro-Perron integrals using Peano derivates, Trans. Amer. Math. Soc. 228 (1977), 287–305. MR 435312, DOI 10.1090/S0002-9947-1977-0435312-0
- P. S. Bullen and S. N. Mukhopadhyay, Peano derivatives and general integrals, Pacific J. Math. 47 (1973), 43–58. MR 327990
- P. S. Bullen and S. N. Mukhopadhyay, On the Peano derivatives, Canadian J. Math. 25 (1973), 127–140. MR 311845, DOI 10.4153/CJM-1973-012-7 J. C. Burkill, The Cesàro-Perron scale of integration, Proc. London Math. Soc. (2) 39 (1935), 541-552. A. Denjoy, Sur l’intégration des coefficients différentiels d’ordre supérieur, Fund. Math. 25 (1935), 273-326.
- Michael J. Evans, $L\,_{p}$ derivatives and approximate Peano derivatives, Trans. Amer. Math. Soc. 165 (1972), 381–388. MR 293030, DOI 10.1090/S0002-9947-1972-0293030-1
- M. Laczkovich, On the absolute Peano derivatives, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21 (1978), 83–97 (1979). MR 536205
- Cheng Ming Lee, Generalizations of Cesàro continuous functions and integrals of Perron type, Trans. Amer. Math. Soc. 266 (1981), no. 2, 461–481. MR 617545, DOI 10.1090/S0002-9947-1981-0617545-4
- Cheng Ming Lee, On the approximate Peano derivatives, J. London Math. Soc. (2) 12 (1975/76), no. 4, 475–478. MR 399378, DOI 10.1112/jlms/s2-12.4.475
- Cheng Ming Lee, An approximate extension of Cesàro-Perron integrals, Bull. Inst. Math. Acad. Sinica 4 (1976), no. 1, 73–82. MR 412358 —, Note on the oscillatory behavior of certain derivatives, Real Anal. Exchange 4 (1979), 178-183.
- C. M. Lee and Richard J. O’Malley, The second approximate derivative and the second approximate Peano derivative, Bull. Inst. Math. Acad. Sinica 3 (1975), no. 2, 193–197. MR 382563
- S. Lojasiewicz, Sur la valeur et la limite d’une distribution en un point, Studia Math. 16 (1957), 1–36 (French). MR 87905, DOI 10.4064/sm-16-1-1-36
- S. N. Mukhopadhyay, On the approximate Peano derivatives, Fund. Math. 88 (1975), no. 2, 133–143. MR 376974, DOI 10.4064/fm-88-2-133-143
- H. William Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444–456. MR 62207, DOI 10.1090/S0002-9947-1954-0062207-1
- Richard J. O’Malley and Clifford E. Weil, The oscillatory behavior of certain derivatives, Trans. Amer. Math. Soc. 234 (1977), no. 2, 467–481. MR 453940, DOI 10.1090/S0002-9947-1977-0453940-3 S. Saks, Theory of the integral, Warsaw, 1937.
- W. L. C. Sargent, A descriptive definition of Cesàro-Perron integrals, Proc. London Math. Soc. (2) 47 (1941), 212–247. MR 5897, DOI 10.1112/plms/s2-47.1.212
- W. L. C. Sargent, On generalized derivatives and Cesàro-Denjoy integrals, Proc. London Math. Soc. (2) 52 (1951), 365–376. MR 41199, DOI 10.1112/plms/s2-52.5.365
- S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313–324. MR 285678, DOI 10.1112/plms/s3-22.2.313
- S. Verblunsky, On a descriptive definition of Cesàro-Perron integrals, J. London Math. Soc. (2) 3 (1971), 326–333. MR 286954, DOI 10.1112/jlms/s2-3.2.326
- Clifford E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363–376. MR 176007, DOI 10.1090/S0002-9947-1965-0176007-2
- Clifford E. Weil, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527–536. MR 335703, DOI 10.1512/iumj.1973.23.23044
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 381-396
- MSC: Primary 26A24; Secondary 26A39
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678358-2
- MathSciNet review: 678358