## Orthogonal geodesic and minimal distributions

HTML articles powered by AMS MathViewer

- by Irl Bivens PDF
- Trans. Amer. Math. Soc.
**275**(1983), 397-408 Request permission

## Abstract:

Let $\mathfrak {F}$ be a smooth distribution on a Riemannian manifold $M$ with $\mathfrak {H}$ the orthogonal distribution. We say that $\mathfrak {F}$ is geodesic provided $\mathfrak {F}$ is integrable with leaves which are totally geodesic submanifolds of $M$. The notion of minimality of a submanifold of $M$ may be defined in terms of a criterion involving any orthonormal frame field tangent to the given submanifold. If this criterion is satisfied by any orthonormal frame field tangent to $\mathfrak {H}$ then we say $\mathfrak {H}$ is minimal. Suppose that $\mathfrak {F}$ and $\mathfrak {H}$ are orthogonal geodesic and minimal distributions on a submanifold of Euclidean space. Then each leaf of $\mathfrak {F}$ is also a submanifold of Euclidean space with mean curvature normal vector field $\eta$. We show that the integral of $|\eta {|^2}$ over $M$ is bounded below by an intrinsic constant and give necessary and sufficient conditions for equality to hold. We study the relationships between the geometry of $M$ and the integrability of $\mathfrak {H}$. For example, if $\mathfrak {F}$ and $\mathfrak {H}$ are orthogonal geodesic and minimal distributions on a space of nonnegative sectional curvature then $\mathfrak {H}$ is integrable iff $\mathfrak {F}$ and $\mathfrak {H}$ are parallel distributions. Similarly if ${M^n}$ has constant negative sectional curvature and dim $\mathfrak {H} = 2 < n$ then $\mathfrak {H}$ is not integrable. If $\mathfrak {F}$ is geodesic and $\mathfrak {H}$ is integrable then we characterize the local structure of the Riemannian metric in the case that the leaves of $\mathfrak {H}$ are flat submanifolds of $M$ with parallel second fundamental form.## References

- Irl Bivens,
*Codazzi tensors and reducible submanifolds*, Trans. Amer. Math. Soc.**268**(1981), no. 1, 231–246. MR**628456**, DOI 10.1090/S0002-9947-1981-0628456-2 - Robert A. Blumenthal,
*Transversely homogeneous foliations*, Ann. Inst. Fourier (Grenoble)**29**(1979), no. 4, vii, 143–158 (English, with French summary). MR**558593** - Robert A. Blumenthal,
*Foliated manifolds with flat basic connection*, J. Differential Geometry**16**(1981), no. 3, 401–406 (1982). MR**654633** - Alfred Gray,
*Pseudo-Riemannian almost product manifolds and submersions*, J. Math. Mech.**16**(1967), 715–737. MR**0205184** - H. Huck, R. Roitzsch, U. Simon, W. Vortisch, R. Walden, B. Wegner, and W. Wendland,
*Beweismethoden der Differentialgeometrie im Grossen*, Lecture Notes in Mathematics, Vol. 335, Springer-Verlag, Berlin-New York, 1973 (German). MR**0370439** - David L. Johnson,
*Kähler submersions and holomorphic connections*, J. Differential Geometry**15**(1980), no. 1, 71–79 (1981). MR**602440** - David L. Johnson and Lee B. Whitt,
*Totally geodesic foliations*, J. Differential Geometry**15**(1980), no. 2, 225–235 (1981). MR**614368** - Barrett O’Neill,
*The fundamental equations of a submersion*, Michigan Math. J.**13**(1966), 459–469. MR**200865** - Robert C. Reilly,
*On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space*, Comment. Math. Helv.**52**(1977), no. 4, 525–533. MR**482597**, DOI 10.1007/BF02567385 - Bernd Wegner,
*Codazzi-Tensoren und Kennzeichnungen sphärischer Immersionen*, J. Differential Geometry**9**(1974), 61–70 (German). MR**362158**

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**275**(1983), 397-408 - MSC: Primary 53C12; Secondary 57R30
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678359-4
- MathSciNet review: 678359