Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution
HTML articles powered by AMS MathViewer
- by J. J. Duistermaat PDF
- Trans. Amer. Math. Soc. 275 (1983), 417-429 Request permission
Abstract:
The Kostant convexity theorem for real flag manifolds is generalized to a Hamiltonian framework. More precisely, it is proved that if $f$ is the momentum mapping for a Hamiltonian torus action on a symplectic manifold $M$ and $Q$ is the fixed point set of an antisymplectic involution of $M$ leaving $f$ invariant, then $f(Q) = f(M) =$ a convex polytope. Also it is proved that the coordinate functions of $f$ are tight, using "half-turn" involutions of $Q$.References
- Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- J. J. Duistermaat, J. A. C. Kolk, and V. S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compositio Math. 49 (1983), no. 3, 309–398. MR 707179
- E. E. Floyd, On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952), 138–147. MR 46039, DOI 10.1090/S0002-9947-1952-0046039-4 —, Periodic maps via Smith theory, Seminar on Transformation Groups (A. Borel, ed.), Ann. of Math. Studies, no. 46, Princeton Univ. Press, Princeton, N. J., 1960, pp. 35-47.
- Theodore Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1–8. MR 131883, DOI 10.2307/1969889
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933 G. J. Heckman, Projections of orbits and asymptotic behaviour of multiplicities for compact Lie groups, Thesis, Leiden, 1980.
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455 (1974). MR 364552
- Kenneth R. Meyer, Hamiltonian systems with a discrete symmetry, J. Differential Equations 41 (1981), no. 2, 228–238. MR 630991, DOI 10.1016/0022-0396(81)90059-0
- G. D. Mostow, On a conjecture of Montgomery, Ann. of Math. (2) 65 (1957), 513–516. MR 87039, DOI 10.2307/1970061
- Masaru Takeuchi and Shoshichi Kobayashi, Minimal imbeddings of $R$-spaces, J. Differential Geometry 2 (1968), 203–215. MR 239007
- Alan Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), 329–346 (1971). MR 286137, DOI 10.1016/0001-8708(71)90020-X
- Chung-Tao Yang, On a problem of Montgomery, Proc. Amer. Math. Soc. 8 (1957), 255–257. MR 87040, DOI 10.1090/S0002-9939-1957-0087040-4
- Masaru Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I 12 (1965), 81–192 (1965). MR 216517
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 417-429
- MSC: Primary 53C15; Secondary 55M20, 58F05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0678361-2
- MathSciNet review: 678361