Nonstandard construction of the stochastic integral and applications to stochastic differential equations. I
Authors:
Douglas N. Hoover and Edwin Perkins
Journal:
Trans. Amer. Math. Soc. 275 (1983), 1-36
MSC:
Primary 60H10; Secondary 03H05
DOI:
https://doi.org/10.1090/S0002-9947-1983-99928-9
Part II:
Trans. Amer. Math. Soc. (1) (1983), 37-58
MathSciNet review:
678335
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: R. M. Anderson has developed a nonstandard approach to Itô integration in which the Itô integral is interpreted as an internal Riemann-Stieltjes sum. In this paper we extend this approach to integration with respect to semimartingales. Lifting and pushing down theorems are proved for local martingales, semimartingales and other right-continuous processes on a Loeb space.
-
R. M. Anderson, Star-finite probability theory, Ph.D. thesis, Yale University, 1977.
- Robert M. Anderson, A non-standard representation for Brownian motion and Itô integration, Israel J. Math. 25 (1976), no. 1-2, 15–46. MR 464380, DOI https://doi.org/10.1007/BF02756559
- Robert M. Anderson, Star-finite representations of measure spaces, Trans. Amer. Math. Soc. 271 (1982), no. 2, 667–687. MR 654856, DOI https://doi.org/10.1090/S0002-9947-1982-0654856-1
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 223–240. MR 0400380
- Claude Dellacherie and Paul-André Meyer, Probabilités et potentiel, Hermann, Paris, 1975 (French). Chapitres I à IV; Édition entièrement refondue; Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV; Actualités Scientifiques et Industrielles, No. 1372. MR 0488194
- Catherine Doléans, Variation quadratique des martingales continues à droite, Ann. Math. Statist. 40 (1969), 284–289 (French). MR 236982, DOI https://doi.org/10.1214/aoms/1177697823
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. MR 0058896 D. N. Hoover and H. J. Keisler, A notion of equivalence for adapted processes (preprint).
- Jean Jacod, Intégrales stochastiques par rapport à une semimartingale vectorielle et changements de filtration, Seminar on Probability, XIV (Paris, 1978/1979) Lecture Notes in Math., vol. 784, Springer, Berlin, 1980, pp. 161–172 (French). MR 580121
- Jean Jacod and Jean Mémin, Existence of weak solutions for stochastic differential equations with driving semimartingales, Stochastics 4 (1980/81), no. 4, 317–337. MR 609691, DOI https://doi.org/10.1080/17442508108833169
- H. Jerome Keisler, An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. 48 (1984), no. 297, x+184. MR 732752, DOI https://doi.org/10.1090/memo/0297
- Tom L. Lindstrøm, Hyperfinite stochastic integration. I. The nonstandard theory, Math. Scand. 46 (1980), no. 2, 265–292. MR 591606, DOI https://doi.org/10.7146/math.scand.a-11868
- Tom L. Lindstrøm, Hyperfinite stochastic integration. I. The nonstandard theory, Math. Scand. 46 (1980), no. 2, 265–292. MR 591606, DOI https://doi.org/10.7146/math.scand.a-11868
- Tom L. Lindstrøm, Hyperfinite stochastic integration. I. The nonstandard theory, Math. Scand. 46 (1980), no. 2, 265–292. MR 591606, DOI https://doi.org/10.7146/math.scand.a-11868
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI https://doi.org/10.1090/S0002-9947-1975-0390154-8
- Peter A. Loeb, Weak limits of measures and the standard part map, Proc. Amer. Math. Soc. 77 (1979), no. 1, 128–135. MR 539645, DOI https://doi.org/10.1090/S0002-9939-1979-0539645-6
- Peter A. Loeb, An introduction to nonstandard analysis and hyperfinite probability theory, Probabilistic analysis and related topics, Vol. 2, Academic Press, New York-London, 1979, pp. 105–142. MR 556680
- Michel Métivier and Jean Pellaumail, Stochastic integration, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. Probability and Mathematical Statistics. MR 578177
- P. A. Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Springer, Berlin, 1976, pp. 245–400. Lecture Notes in Math., Vol. 511 (French). MR 0501332 L. Panetta, Hyperreal probability spaces: some applications of the Loeb construction, Ph.D. thesis, University of Wisconsin, 1978. E. Perkins, A non-standard approach to Brownian local time, Ph.D. thesis. University of Illinois, 1979.
- Edwin Perkins, On the construction and distribution of a local martingale with a given absolute value, Trans. Amer. Math. Soc. 271 (1982), no. 1, 261–281. MR 648092, DOI https://doi.org/10.1090/S0002-9947-1982-0648092-2 A. V. Skorokhod, Limit theorems for stochastic processes, Theory Probab. Appl. 1 (1956), 261-290.
- Charles Stone, Weak convergence of stochastic processes defined on semi-infinite time intervals, Proc. Amer. Math. Soc. 14 (1963), 694–696. MR 153046, DOI https://doi.org/10.1090/S0002-9939-1963-0153046-2
- K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Pure and Applied Mathematics, No. 72. MR 0491163 K. D. Stroyan and J. M. Bayod, Introduction to infinitesimal stochastic analysis (preprint), 1980.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 60H10, 03H05
Retrieve articles in all journals with MSC: 60H10, 03H05
Additional Information
Keywords:
Stochastic integration,
local martingale,
semimartingale,
quadratic variation,
Skorokhod topology,
nonstandard analysis
Article copyright:
© Copyright 1983
American Mathematical Society